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Unit 1

Extension Fields

Objectives:

e Recall rings and commutative ring.
e Analyze the characteristics of fields.
e Study how to extend a field to a extension field.
e Understand the concept of algebraic extensions.

e To show that the number e is transcendental.

1.1 Field Extension

Definition 1.1.1. Let R be a commutative ring with identity. R is a field
if every non-zero element in R has multiplicative inverse (or) (R*,.) is an

abelian group (or) R is a commutative skew field.

Example 1.1.2. (i) Q C R C C, Z, are fields.
(i) Q(z),R(x),C(x), Z,(x) are fields.
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Definition 1.1.3. Let F be a field. A field K is a field extension of F' if
F' is subfield of K.
[K : F] denote K is field extension of F.

Example 1.1.4. (i) [C: R],[C: Q], R : Q] are field extensions.

(ii) Every field F is a field extension of itself.

Remark 1.1.5. If [K : F] is a field extension, then F' is a subfield of K
and so K is a non-zero vector space over F'. Hence K has basis B and

dimpK = |B|. Hence the degree of [K : F|is [K : F| = dimpK.

Remark 1.1.6. If ¢ : FF — K is any ring homomorphism, where F, K
are fields, then p =0 or ¢ is 1 — 1.

Theorem 1.1.7. Let p(x) be a non-zero constant irreducible polynomial
of degree n over F'. Then there exists a field extension K of F' such that
K has a root of p(x) and [K : F] = n.

Proof. Since p(z) is irreducible over F', < p(z) > is maximal ideal in

Flx]. Clearly, F is a subring of Flz|. Clearly <§([g> is a field. Take
K = ot = {f(0)+ < p(w) > f(2) € Fla]}.

<p(z)>

Define ¢ : F — K by ¢(a) = a+ < p(x) >, forall a € F. Let a,b € F.

Now ¢(a+0b) = (a+b)+ < p(z) >= a+ < p(x) > +b+ < p(x) >= ¢(a)+
B(b), Blab) = abt < p(x) >= (a+ < p(x) >)(b+ < p(x) >) = Ha)d(b).

Therefore ¢ is a ring homomorphism. Since ¢(1) = 1+ < p(z) # 0+ <
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p(z) >, ¢ is non-zero ring homomorphism. By Remark [I.1.6] ¢ is 1 — 1
= Ker¢ = {0}. By first isomorphism Theorem, F' = ¢(F') is a subring
of K and so [K : F] is a field extension.

Define ¢ : Flz] — K by ¢¥(g(x)) = g(z)+ < p(z) >, for all g(z) €

2),h(z) € Fla]. ¥(g(x) +h(z)) = (g(x) + h(x))}+ < p(x) >=

) = ¥(g(x))Y(h(x)). Thus 9 is a ring homomorphism. Clearly, 1 (a) =
at+ < p(x) >= ¢(a), for all a € F C Flz]. Since FF = ¢(F), a =
o(a) = a+ < p(x) >,Va € F. Let p(x) = ag+ a1z + - - + a,a" € Flz].
Then ¥(p(x)) = 04+ < p(x) > in K. Let a = x+ < p(x) >€ K. Then
Y(p(r)) =0+ < p(z) > in K. = Y(ag+ a1z +- -+ a,z") = 0+ < p(x) >
in K.

= (ag) + Y(a)Y(x) + - + Y(ay)Y (") = 0+ < p(z) > in K. ap+ <
p(z) > +ar+ < p(x) > (a+ < p(x) >) + -+ (ant+ < p(z) >)(2"+ <
p(x) >) =0+ < p(xr) > in K.

= ag + a1 + aa® + -+ + a,a” = 04+ < p(x) > in K. Thus a is a
root of p(x) in K. Since @ = 2+ < p(x) >, we have 1+ < p(z) >=
La,o?..., 0" € K. Let B = {l,a,0? ...,a" 1} C K. Suppose
ap + a0 + -+ + a, 10" = 0+ < p(x) >, where a; € F. Then,
ap + ai(z+ < p(r) >) + az(2*+ < p(x) >) + -+ + a1 (2" 4 < p(x) >
) =0+ < p(z) >.

= ag + a1z + ax? + -+ a1 2" < p(r) >= 0+ < p(x) > .

= ap+ a1 + -+ a,12" €< pla) >= {\x)f(z) : Mx) € Flz]}.



— (1).

For any g(r) €< p(x) > and g(x) # 0, deg(g(z)) < n. (1) is pos-

sible, when ag + a1z + -+ + a, 12" ' = 0. Since, {1,z,...,2" 1} C
{1,z,2% ...,2", ...} is lineraly independent in F[z].
= {1,z,...,2" '} is linearly independent. Since ag+a,z+---+a, 12"+ =

0, a; = 0. Thus B is linearly independent subset of K. For any g(z)+ <
p(z) >€ K, g(x)+ < p(x) ># 0+ < p(z) >. Thus g(x) ¢< p(z) > and
g(z) # 0, g(x) € Flx]. By division algorithm, there exists ¢q(z),r(z) €
Flz] such that g(z) = p(x)q(z) + r(z), where r(z) = 0 or deg(r(x)) <
deg(p(x)) = n.

Let r(z) = ap+a1x+a, 12" € Flz]. Then g(z)+ < p(z) >= p(z)q(x)+
r(z)+ < p(x) >=r(x)+ < p(z) >= ag+arx+- - +a, 12"+ < p(z) >=
(ap+ < p(z) >) + (a1+ < p(z) >)(2+ < p(z) >) + -+ (an1+ < p(z) >

)(2" 4 < p(z) >) = ap+aja+- - -+a, 10" L. Thus B spans K and B is a

basis for K over F and I = —LEL — {ag+aja+---+a, 10"t :a; € F}.

<p(z)>

Hence [K : F] = n. 0

Definition 1.1.8. Let [K : F] be a field extension and S C K. Then

K, is a subfield of K. F(S) is the smallest field containing both F' and

S. For any o € K, F(«) is the smallest field containing both F' and «.

Corollary 1.1.9. Let p(x) be an irreducible polynomial of degree n over

F. Then K = F(«).



Proof. Clearly K = {ag +aja+ -+ +a, 10" ! :aq; € F} and F(a) C
K — (1).

Define ¢ : K — F(a) by ¢(g9(z)+ < p(x) >) = g(a),Vg(z)+ < p(x) >€
K. Then ¢ is a ring homomorphism and ¢(14+ < p(x) >) = ¢(x+ <
p(z) >) =2 =1%#0. Byresult 1, ¢ is 1-1. By first isomorphism theorem,

K = ¢(K) C F(a) — (2). From (1) and (2), we get K = F(«). O

Problem 1.1.10. Let p(z) = 2> + 1 € R[z|. Then +: are roots of p(x)
and +i ¢ R. Thus p(z) is irreducible over R. Take o = i and K = R[],
{1, a} is a basis for K over R and K = R[i] = {ay = a1i : a; € R} = C.

Problem 1.1.11. Let p(z) = 22 — 2 € Q[x]. Then £+/2 are roots of p(z)
and £/2 ¢ Q[z]. Taking o = v/2, {1,1/2} is basis for K over (). Thus
K =Q[V?2] = {ag+ a1v2 : a; € Q}.

Theorem 1.1.12. Let f(x) be any non-constant polynomial of degree n

over . Then there exists an extension K of F' such that K has a root of

f(x) and [K : F| < deg(f(x)).

Proof. If f(z) is irreducible, then by Theorem [3.2.24] there exists a
field extension K of F' such that K has a root, say «, of p(x) and [K :
F] = n. Suppose f(z) is reducible over F. Since Fl[z]| is UFD, f(x) =
p1(x) -+ p(x), where pis are irreducible over F. clearly, deg(p;(x)) >
1. consider pi(x) € Flz]. Then by Theorem [3.2.24] there is a field

extension K of F' such that K has a root a of pi(z) and [K : F] =
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deg(pi(x)). Clearly f(a) = 0 and « is a root of f(z) over F and [K :

F] = deg(pi(z)) < deg(f(z)). O

1.1.1 Finite Extension

Definition 1.1.13. Let [K : F| be a field extension. [K : F] is a finite

extension if [K : F] < oo,

Example 1.1.14. [Q(v2) : Q] = 2 and [Q(3) : Q] = 2

Theorem 1.1.15. Let [L : K| and [K : F] be finite extensions. Then
[L : F] is a finite extension and [L : F| = [L: K|[K : F].

Proof. Let [L: K]=nand [K : F|=m. Let {a1,as,...,a,} be a basis
for L over K, where o; € L and {f,32,...,0n} be a basis for K over
F, where ; € K. Let B={wf; :i=1,2,...,n,j=1,2,....,m} C L.
Then |B| = mn. Clearly, [L : F] is a field etension. Since {a1, as,...,a;,}
is a basis for L over K, there exists ay,as,...,a, € K such that u =
ajotasan+- - -+apay, for any u € L. Since {1, B2, . . ., Bm } be a basis for
K over F, there exist b;1, bjo, ..., by, € F such that a; = b1 614+ bimBm.-
= u = a1 + asag + - + apay, = (b1 fB1+ - bimBm)or + -+ + (bp1f1 +
-+~ bpmBm) . Thus B spans L over F. Since |B| < oo, dimp(L) < oc.
Suppose éjl jgjl dijBjo; = 0, where d;; € F' C K. Then,

(jTerl dy;B;)on + (jTanl dojifBi)an + -+ + (j%l dnjBi)on = 0, where 8;,d;; € K.
Since {ay, Q, ..., a,} is linearly independent in L over K, jg:l dijB; = 0,
for i = 1,2,...,n. Since {f1, Pa,...,Bn} is linearly independent in K
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over I', dyj = dy;j = --- = d,; = 0, for all j =1 to m. Thus B is linearly
independent and so B is a basis for L over F'. Hence [L : F| = [L: K|[K :

F] = nm. 0

Corollary 1.1.16. Let [L : K|,[K : F] be field extensions. If either
[K : F]=o00 or [L: K| =00, then [L: F] = occ.

Proof. Suppose [K : F] = oo, then dimp(K) = oo and there exists
aq, o, ... € K such that {aq, a9, ..., ay, ...} is linearly independent in K
over F. Since L is a vector space over K, {1} is linearly independent in
L over K. Thus {l.o; : i € N} C L is linearly independent in L over F.
Suppose [L : K] = 0o, then dim (L) = oo and there exists ay, ag, ... €
L such that {aq, s, ..., ay, ...} is linearly independent in L over K. Since
K is a vector space over F, {1} is linearly independent in K over F.
Thus {l.a; : i € N} C L is linearly independent in L over F. Hence

[L: F] = oc. 0

Corollary 1.1.17. Let [K : F] be a field extension. If [K : F] = p is

prime. Find all subfields of K containing F'.

Proof. Clearly, F, K are subfields of K containing F'. Suppose E be
any subfield of K containing F. If [F : F] = oo, then [K : F| = oo,
which contradicts [K : F] < co. If [K : E] = oo, then [K : F] = oo,
which contradicts [K : F] < oo. Hence [EF : F|,[K : E] < oo and
p=|[K:F]=[K:E|FE:F]. Thus [K : E] or [E : F] is one and so

11



K = F or E = F. Hence, F' and K are only subfieldd of K containing
F. O

Corollary 1.1.18. If [L : F] is a finite extension and K is a subfield of

L containing F', then [K : F| divides [L : F].

Proof. Since [L : F] < oo, [K : F|,[L: K| < co. Thus [L : F] = [L:
K]|[K : F). clearly F, K are subfields of K. Suppose E is any subfield of
K containing F. If [E : F] = oo, then [K : F] = oo, which contradicts
(K : F] <oo. If [K: FE] =00, then [K : F] = 0o, which contradicts [K :
F] < oo. Hence [F: F|,[K : E]<occand p=[K : F]=[K: E|[E: F].
Thus [K : E] or [E: F|is one and so K = F or E = F. Hence [K : F]|
divides [L : F. O

1.1.2 Algebraic Extension

Definition 1.1.19. Let [K : F] be a field extension and o« € K. « is
algebraic over F' if f(a) = 0, for some f(z) € Flz]. « is transcendental

element over F' if « is not algebraic over F.

Example 1.1.20. Let o = v/2+ i € C. Is « algebraic over Q7

Proof. Let a=+v2+i€C. Then a? =2 — 14 2V2i = 1 + 21/2i.
= (a?—1)? = =8 and so a*—2a*+9 = 0. ais aroot of 2*—222+9 € Qlz].

Thus « is algebraic over (). O
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Remark 1.1.21. If [K : F] is field extension, then « is a root of v — «a €

F[z], for all & € F. Thus « is algebraic over F, for all a € F.

Definition 1.1.22. Let [K : F| be field extension, [K : F] is algebraic

extension if « is algebraic over F,Va € K.

Example 1.1.23. (i) C|R is algebraic extension.

(ii) C|@ is not algebraic extension.

Theorem 1.1.24. Any finite extension is algebraic.

Proof. Let [K : F] be a finite extension and [K : F| = n. Let a € K.
Then 1,a,0?,...,0" € K. Since [K : F] = n,{1,q,...,a"} is linearly
dependent in K over F. There exists ag, a1, . .., a,(not all zero) such that
ap + aja + -+ - + a,a™ = 0 ans so « is a root of ag + ajx + asx® + - - - +
apz™ € F[z]. This implies that « is algebraic over F' and hence [K : F] is
algebraic.

Converse need not true. O

Problem 1.1.25. Find [Q(v/2,v/3) : Q]

Proof. We know that [Q(v/2) : Q] = 2 and {1,+/2} is a basis for Q(v/2)
over Q.

[R(V2,V3) : Q(v2)] = [R(V2)(V3) : Q(v2)] = deg(a® — 3) = 2.{1,/3}
is a basis for Q(v/2)(v/3) over Q(v/2).

[Q(V2,v3) : Q) = [Q(vV2,V3) : Q(V2)][Q(vV2) : Q] = 2.2 = 4 and
{1,4/2,4/3,4/6} is a basis for Q(v/2,/3) over Q. O
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Problem 1.1.26. Find [Q(v/2,v3,V5) : Q]

Proof. [Q(v2,vV3)(V5): Q(v2,V3)] = deg(a® — 5) = 2 and {1,V/5} is

a basis for Q(v2,v/3, v/5) over Q(v/3, v3).

QW2 VEVE) : Q] = [RWVZVI(VE) : QVEVIIQ(VE V) : Q] =
2.4 = 8 and {1, V2, v/3,v/6, /3, v/T0, v/T5, /30 is a basis for Q(v/2, v/3, v/5)

over Q).

In general, [Q(\/P1,/D2; - --»+/Pn) : Q] = 2", where p;s are prime. O

Example 1.1.27. Give an example of inifinite algebraic extension.

Proof. Let K = {Q(,/p) : pis prime}. Then K|Q is a field extension.
Claim: pr ¢ {plap27 <. 7pn}7 then \/ﬁ ¢ Q(\/p_la \/p_27 SR \/p_n)

If n =0, then \/p ¢ @,V prime p. Suppose n = 1. Assume that p ¢ {p:}
Claim: \/p ¢ Q(\/p1) = {a +b\/p1 : a,b € Q}.

Suppose \/p € Q(/p1). Then \/p = a+ b\/p1 # 0 and p = a® + V?p; +
2ab\/p1. If @ = 0 and b # 0, then p = b’p1. = pi1|p, which contra-
dicts (p,p1) = 1. If a # 0 and b = 0, then p = a®>. = /p = a € Q,
which is a contradiction. If a # 0,b # 0, then |/p; = ’% € Q,

which is a contradiction. Hence \/p ¢ Q(p1). Assume that the result is

true for n — 1. If p & {p1,p2,...,Pn-1}, then /D & Q(\/P1,- -,/ Pn-1)-
Consider the field Q(/p1,.-.,+/Pn) = Q(/P1:---s/Pn-1)(y/Pn). Sup-
pose /b € Q(/P1,---,y/Pn1)(y/Pn).- Then \/p = a + b\/p,, where
a,b € Q(/P1,...,/Pn-1). If a =0,b#, then p = b*p1. = pi|p, which
contradicts (p,p1) =1. If a# 0 and b =0, then p =a* = /p=a € Q,
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which is a contradiction. If a # 0,b # 0, then \/p1 = % € Q,
which is a contradiction. Hence /p & Q(\/pP1,...,+/Pn).- Note that
[Q(\/P1s---5/Pn) + Q] = 27, for all n and so [K : Q] = oo. For any
a € K,Q{\/p:pisprime} C R, there exists ¢, g2, . . . , g, distinct primes
such that a € Q(\/q1, - - -, /Gm)- Since [Q(\/q1, - - -, /Tm) : @ = 2™ < o0,
Q(\/q1, - - -, /@m) is algebraic. Thus « is algebraic over @ and [K : Q] is

algebraic extension. O

Theorem 1.1.28. Let [K : F] be a field extension, o € K. Then « is
algebraic over F if and only if there exists a unique monic polynomial

m, r(a) € Flz] such that m(a) = 0.

Proof. Suppose a € K is algebraic over F. Then f(«) = 0, for some
f(x) € Flz]. Let S = {deg(h(z)) € Z* : h(z) € F[z],h(a) = 0}. Then
S # ¢and S C Z". By well ordering principle, S has least element,say m.
Clearly, m < deg(g(x)), for some g(z) € F[x]. Let g(x) be the least degree
polynomial in F[x] such that g(a) = 0. Then h(a) # 0, for all h(z) € F|x]
and deg(h(x)) < deg(g(x)). Let g(x) = ag+ a1z + - - - + anx™, ay, # 0. If
a, = 1, then g(x) is a monic polynomial. Suppose a,, # 1. Then t(z) =
a-tg(x) and deg(t(z)) = deg(g(x)) = n and so ¢(x) is a monic polynomial
in F[x]. Suppose t(z) is irreducible, then by defn, t(z) = s(x)h(z), for
some s(z), h(z) € F[z]. Since t(a) = 0, s(a)h(a) = 0,s(a),h(a) € K.
Since K is integral domain, s(a) = 0 or h(a) = 0, which is a contradiction.
Suppose [(x) is a monic irreducible polynomial in F'[z] such that [(a) = 0.
By division algorithm, there exists ¢(z),r(x) € Flz]| such that [(x) =
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q(z)t(x) + r(x), where r(z) = 0 or deg(r(z)) < deg(t(x)). If deg(r(z)) <
deg(t(x)), then r(a) = l(a) — q(a)t(a) = 0, a contradiction. Hence
r(z) = 0 and l(x) = g(z)t(x). Since l(x) is irreducible, deg(l(x)) > 1,
t(x) is not a unit, g(x) = w is unit in F and [(z) = wut(x). Since [(x) is
monic, leading coefficient of [(x) = 1. Thus I(z) = t(x).
Conversely, suppose there exists a unique monic polynomial m, p(a) €

F[z] such that m(a) = 0. Then « is algebraic over F. O

Definition 1.1.29. Let [K : F] be a field extension and a € K, « is
algebraic of degree n over F' if o is a root of non-zero polynomial f(x) €

Flz] of degree n and p(a) # 0, V p(z) € F[z] and deg(p(z)) < deg(f(x)).

Theorem 1.1.30. Let f(x) € Flz|. Then there is an extension K over
F such that all roots of f(x) lies in K and [K : F] < deg(f(z))!

Proof. Ifn =1, then f(z) =ax+0b,a,b € F,a # 0. Clearly _71’ € I and
f(=2) = 0. In this case, K = F and [K : F| = 1l. Suppose n = 2. If f(x)
is reducible over F'. Then f(x) = (ayx + b1) + (azx + by). _a—b € F be a
root of f(x). Here K = F,[K : F| < 2! = 1. Suppose f(z) is irreducible
over F', then there is an extension K of F' such that K has a root of f(x)
and [K : F] = 2. Clearly, K = F(a) and f(z) is reducible over F' and
f(x) = (x —a)(x — p) and [K : F| =2 = 2!. Assume that the theorem
is true for all non-constant polynomials of degree< n. Let n > 3 and «
be a root of f(x) in some extension of F'. Then f(a) =0 and so f(z) is
reducible over F[x]. Clearly, [F(«) : 8] < nand f(z) = (r—a)g(x), where
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g(x) € F(a)|z], deg(g(x)) = n — 1. By induction there is an extension F’
of F(a)) such that all roots of g(z) in F', [’ : F(a)] < (n—1)!. Thus
[F': F]=[F: F(o)][F(a): F] < (n—1)n=n!and a € F’. Hence all

roots of f(x) in F". O

Definition 1.1.31. Let f(z) € Flz| and [K : F| be a field extension,
f(x) splits over K if f(x) = Zf[l(axi + b;), where a;,b; € K. A field K is
a splitting field for f(z) over F if (i) All roots of f(z) lies in K. (ii) If
F is any proper subfield of K, then f(x) is not split over F' or K is the

smallest field containing all roots of f(z) over F.

Theorem 1.1.32. If o € K is algebraic over F and f(a) = 0, for some
f(z) € Flz], then m, p divides f(x)

Proof. Let f(x) € Flz] and m, r € F[z]. By division algorithm, there
exists ¢(x),r(z) € F|z] such that f(z) = ¢(x)myp+r(x), where r(z) =0
or deg(r(z)) < deg(m, ). Also, r(a) = f(a) — g(a)m,r = 0. By choice

of my p,7(x) = 0. Thus f(x)q(z)m, p and m, p divides f(z). O

Theorem 1.1.33. Let 0 : K1 — Ky be an isomorphism, if f(x) € Ki[z]
and o f(x) € Kolx]. If Ey is a splitting field of f(x) over Ky and FEsy is
splitting field of o f(x) over Ky. Then there is an isomorphism from E

onto Fs

Proof. Clearly Ey|K;, Es| K are field extensions. If [E} : K] = 1, then
dimg,(Fy) = 1 and so By = Ky. f(z) = (x — a1) -+ (x — oy), where
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a; € 1. Now, o(f(x)) =0(x —aq)---o(x —ay) = (. —o(aq)) -+ (z —
o(ay)). Since Fy is a splitting field of o(f(x)), F» € Ky C E,. Hence
o : Fy — E, is an isomorphism. Assume that theorem is true for [F :
Ki] <n. Let [E : K1) =n > 1. Since f(x) € Ki[z] and K;[z]| is UFD,
f(x) = pr(x)pa(z) - - pe(z). If deg(pi(x)) = 1, for all i, then p;(z) =

a;(z) + b;,=% € K is a root of p;(z) and f(z). Since Ej is the splitting

field of f(x) over K, Fy C Ky C Fy, Thus [E; : K;] = 1, a contradiction.
Hence, deg(p;(x)) > 1, for some i. Let a; be a root of p(z) and oy be
a root of o(f(z)). Then there is an isomorphism 0 : Ki(ap) — Ka(ay).
Then the splitting field of f(z) over Ki(«aq) is Ey and the splitting field
of o(f(x)) over Ky(aw).[Ey : K] = [Ey @ Ki(an)][Ki(aq) @ K.

[EllKl]

= [Er: Ki(on)] = i

< n. By induction, there is an isomorphism

from E; onto Es. O

Let us sum up:

e Extension fields and finite extension.

e Algebraic of degree n over the field F.

e Algebraic extension.

e Algebraic number and Transcendental number.

e Fundamental theorem of Algebra.
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Check your progress

1. If Q3] = {a+bV3: a,b € Q} is a field extension of Q. Hence
[Qv3]: Q] =

2. A complex number is said to be an algebraic number if it is algebraic

over the field of —

1.2 Transcendental

Definition 1.2.1. An element o € C is called transcendental over Q if «

is not algebraic over Q.

Example 1.2.2. Let a = 7. Then « is not algebraic over Q and so « is
transcendental over Q.

Clearly « is algebraic over R and so is transcendental over R.

Theorem 1.2.3. The number e is transcendental.

Proof. Let f(z) € Rlz] and deg(f(x)) = r. Let F(z) = f(z)
fO(@)+ fB(x)+- -+ f(r)(z). Clearly, f D (z = 0.) Now L (e”F(x)) =
e TF (x) — e F(z) = —e " f(x).

+

(Mean Value Theorem: If g(x) is a continuous differentiable, single valued
function on [a, b], then w =g (a+6(b—a)) where, 0 < 0 < 1.)
Apply Mean value theorem of e *F[z] on [0, 1] we get, e 1F(1) — F(0) =
—e f(0)) = F(1) —eF(0) = —e"f(6,) = €,0 < 0, < 1.

On [0,2], “EA=FO) _ =20 £(99,)
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F(2) — 2F(0) = —2e7207%) £(20,) = ¢,.
On [0,1], F(n) — €*F(0) = —ne="1-02) () = 0,0 < 6, < 1.
In general, On [0, 1], F(n)—e"F(0) = —ne ™00 f(nf,) = ¢, -+

Suppose that, e is an algebraic number. Then, there exists
flx)=co+cx+ -+ cpa” € Zlz],

co > 0 such that f(e) =0.

Clearly, co + cre + e + -+ cpe” = 0w v (2).

Now, cre1 + ca€a + -+ - + cpen = 1 (F (1) — eF(0)) + c2(F(2) — 2 F(0)) +
v+ cp(F(n) — e"F(0)) = aiF(1) + -+ + coF(n)(cre + cae® + -+ +
€ F(0)er F(1) 4+ -+ 4+ cpF'n+ coFy = coF(0) + 1 F(1) + - - - + ¢, F(n).

Hence cie1 + -+ 4+ chep = coF(0) + 1 F(1) + -+ -+, F(n) -+ -v oo (3)

Choose any prime p > n and p > ¢y. Consider

flx) = = 1)!xp_ (I—z)P2—2x) - (n—a)P.

Let
F(z) = f(z)+ f () + -+ f(2).

Clearly, f(z) has a root of multiplicity p at z =1,2,--- | n.
From this, f(j) = 0,f(j) = 0, (j) = 0---, f'(j) = 0 for all j =
1,2,--- . n.
Also f(x) has a root of multiplicity p — 1 at x = 0.
Clearly, f(x) = (](3”_!)11;) Pl 4 (pa_ol)!xp +--+a, €Z

For i,p, f'(x) € Z[z]and the coefficients of f'(x) are multiples of p. and
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so for integer j, f'(j) is multiple of p. Since F(z) = f(x)+ f (z) + f*(x) +
e [N E) + () + £70).
For j = 1 to n, F(j) is an integer and multiple of p. Clearly, f(0) =
FO) == f10) =0

For i > p, fY(0) € Z and is multiple of p. but f271(0) = (n!?
Since p >n, pfn! = pt(n))?P
F(0) = £(0) + £1(0) + -+ fr2(0) + Fr-D(0) + FD(0) +--- + £(0).
Hence p{ F(0). p/F(1),--- ,p/F(n).
From this, ¢gF'(0)+c1F (1) +- - -+ ¢, F(n)is an integer and is not divisible
by p.
By (3), coF'(0) + 1 F (1) + -+ - + ¢, F(n) = crel + - - - + cu€p.

€ = —Z.Gi(l_ei)f(wi), 0<6, <1

—ie =00 (70,)P~1(1 — i0))P - - - (n — i6,)P
(p— 1!

-1
le1] < S [ B nnt " (nh)”

(p—1)! (p—1)!

as p — 00, |g| < en(;n_')l];?p — 0.

Thus we can find a large prime p such that, p > ¢y, and p > n,

lco€r + -+ -+ cpenl <n = 169+ -+ e, = 0.

coF(0)+ -+ c, F(n)=creg + -+ cpen, = 0.

p|0 = p|coF(0) + -+ 4+ ¢, F(n), which is a contradiction. Hence p is

not algebraic over Q.
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Let us sum up:

e The number e is transcendental.

e /" is transcendental (m > 0, n are integers).

Check your progress 5.2

1. The number e is called —

2. If a,b € K are algebraic over F' of degrees m and n, then F(a,b) =

Unit Summary:

In this unit, we recalled the basic of rings and commutative ring with unit
element. Next, we introduced fields and analyzed the characteristics of
fields. Further studied how to extend a field to extension field and the
concept of algebraic extensions. Finally we showed that the number e is

transcendental.

Glossary:

e [K : F]is the dimension of K over F.
o [L:F]=[L:K]|K:F|.
o [F(a): F]=nlIf a € K is algebraic of degree n over F.

e The number e is transcendental.

22



Self Assessment Questions

1. Show that the number e is transcendental.

2. If a € K is algebraic over F|, then prove F'(a) is a finite extension of

F.

3. If F(a) is a finite extension of F, then prove a € K is algebraic over

F.

4. Prove that the mapping ¢ : F|z] — F(a) defined by h(z)1) = h(a) is

a homomorphism.

Exercises

1. In R, v/2 and /3 are both algebraic over (). Exhibit a polynomial
of degree 4 over ) satisfied by v/2+ v/3. Find the degree of v/2+/3

over (Q and degree v/2v/3 over Q.

m

2. If m > 0 and n are integers, prove that en is transcendental.
3. What is the degree of V2 + /3 over @ 7 Prove your answer.

4. If a is an algebraic integer and m is an ordinary integer, prove
(a) @ + m is an algebraic integer.

(b) ma is an algebraic integer.

Answers for check your progress

Section 1.1

1. 2
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2. Rational numbers

Section 1.2

1. Transcendental

2. F(b,a)
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Unit 2

More About Roots

Objectives:
e Know to field and extension field over ring polynomials.
e To introduced splitting field with properties.
e To study more about roots of polynomials.

e Know to the concept of simple extension.

2.1 Roots of Polynomials
Definition 2.1.1. If p(x) € F(x), then an element a lying in some ez-

tension field of F (k) is called a root of p(x) if p(a) = 0.

Lemma 2.1.2. If p(x) € Flz] and K is an extension of F, then for any
element b € K, p(x) = (v — b)q(x) + p(b) where q(z) € Klx]. and

degq(x) = degp(x) — 1.
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Proof. Since F' C K, F[x] is contained in K[z]. we can consider p(z) to
be lying in k|z].

By the division algorithm for polynomial in k[z].

p(x) = (x = b)g(x) +r(x)

where ¢(x) € k[z] and 7 = 0 (or) degr < deg(z — b).
This gives either r = 0 (or) deg r = 0, either  must be an element of K.

Since p(x) = (z — b)q(x) +r

P(b)=0+r=r=P(b)

Thus, p(z) = (z —b)q(x) + p(b).

Then,
degp(z) = deg|(z — b)q(z) + p(b)]
degp(z) = deg(x —b) + degq(x) + degp(b)
degp(x) = 14 degq(z)+0
degp(z) —1 = degq(x)
Hence proved. O

Corollary 2.1.3. If a € K is a root of p(x) € F[zx|, whereF' € K, then

in Klz], (x — a) | p(x).

Proof. Since p(z) € Flx] and F € K, then p(z) € F[z]. but a € k, then

by lemma 2.1.1, in k[z],

p(z) = (z = a)q(z) + pla),
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where ¢(x) € K[z] and degp(x) — 1 = degq(zx).

Since a € K is a root of p(x) then p(a) = 0.

= p(z) = (r — a)q(z)

= (z —a) | p(x) in k[z].

Definition 2.1.4. The element a € K is a root of p(z) € Fz| of multi-

plicity m if (x — a)™ | p(x), whereas (x — a)™"! f p(x).

Lemma 2.1.5. A polynomial of degree n over a field can have atmost n

roots in any extension fields.

Proof. Proof: Let us prove this result by using induction on n, the
degree of the polynomial P(x).

If p(x) is of degree 1, then it must be of the form cx+ 3, where o, 8 € F
and a # 0.

Any ’a’ such that p(a) = 0 implies that aa + § = 0.

=a=—

p
a

That is, p(x) has the unique root —f/a.
Therefore, the result is true in this case.
Assume that the result is true in any field for all polynomials of degree

less than n.
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Suppose that p(z) is of degree n over F'. Let k be any extension of F. If
P(x) has no roots in K, then for the number of roots in k, namely zero,
is definitely at most n.

So, suppose that P(x) has at least one root a € k and * a ’ is a root of
multiplicity m.

Since (x — a)™ | p(x), m < n, then

P(r) = (r —a)"q(x), q(z) € Kz]

and deg q(z) =n —m.
From (z — a)"™* { p(z),
we get

(z —a) 1 q(z).

By corollary to lemma 2.1.1, ¢ a ’ is not a root of ¢(x).

If a # b e K is a root of P(x), then p(b) =0

= (b—a)"q(b) =0

= q(b) =0,

since (b —a) # 0.

That is, any root of p(z), in K, other than ‘ a ’, must be a root of
q(z). since, degree of q(x) = n — m, which is less than n, then by our
induction hypothesis, ¢(x) has at most n — m roots in K, which together

with the other root ‘ a ’, counted m times, gives that p(x) has at most

m + (n —m) = n roots in k.
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Hence proved. O

Theorem 2.1.6. If p(x) is a polynomial in F|x| of degree n > 1 and is
irreducible over F', then there is an extension E of F', such that [E : F] =

n, in which p(x) has a root.

Proof. Let Fz] be the ring of polynomials in x over F. and let V =
(p(x)) be the ideal of F[x] generated by p(x).

By lemma "The ideal A = (P(z)) in Fz] is a maximal ideal if and
only if p(x) is irreducible over F'”, we have

V is a maximal ideal of F[x].

Then by theorem ”"If R is a commutative ring with unit element and
M is an ideal of R, then M is a maximal ideal of R if and only if R/M is
a field”, we have

E = Flz|/v

is a field.
First to show that F is an extension of F'.
Let F be the image of F in E. ie., F = {a+V | a € F} We assert that

F is a field isomorphic to F.
If <« :F[z] —» E, defined by

f@)y = fle)+V Vf(z)e Fla]

then the restriction of ¥ to F' induces an isomorphism of F' onto F'.

By using this isomorphism, consider £ to be an extension of F'.
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We claim that, F is a finite extension of F of degree n =deg p(x), for the
elements

1+ Va4+V,(2+ V)i =22 +V,...,(a+ V) =2"+V,...,

(z+ V)"t =2"t 4V

form a basis of E over F'.

Let " a ’ be any element in the field E, such that
a=xp=x+V

Given f(z) € Flz]

To claim that f(x)y = f(a). since ¢ is a homomorphism and if

f(@) = Bo+ Prx + Box® + - - - + B,

then

f@) = Bo + (Brz) v + (o) ¥ + - + (Bra®) ¥

= Botb + (B1¢) (2) + (Bot)) (2) + - -+ + (Brt) (2"

By using the identification indicated (i with S,

F@) = Bo + Bi(w) + Ba (z%) + - + By («*)
=Bo+ Bz +V)+ B (2 + V) + -+ B (2" + V)
=Bo+Bilx+ V) + Ba(z + V)2 4+ B (z + V)"
= Bo + Bra + Boa® + - - + Pra®

= f(a)
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= f(z)¢ = f(a).

since p(z) € VandV is a maximal ideal of F'[z], then
p(x)y =0

But, p(z)¢ = p(a)
= pla) =0

Thus, the element @ = v in F is a root of p(x).

Let us sum up:

e Remainder Theorem.
e Roots of the polynomial and Roots of multiplicity.
e Reducible and irreducible of the polynomial.

e Splitting field.

Check your progress

1. If a is root of p(z) € F[z]| of multiplicity m then —

2. The splitting field of f(z) = 2? — 3 over Q is —
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2.2 More About Roots

Definition 2.2.1. Let f(x) € F[x] and o € K be a root of f(x) in some
extension K of F. « is a multiple root of f(z) with multiplicity m if
(2 — a)"|f(w) and (& — )™ [f(z).

If m = 1, then « is a simple root of f(x). If f(x) is separable, it has
no multiple roots. Let f(z) = ap + a1x + --- + a,2” € F[z]. Then,
[P =a1 4+ 2a0 + -+ + naya" ! € Flal.

(f(z) +g(x)) = f(2) + g(x),(af(@)) = af(zx) and (f(z)g(x)) =
f(@)g(z) + g (2) f ().

Theorem 2.2.2. Let f(x) € F[z]. Let o be a root of f(z). Then « is a
multiple root of f(x) iff f (a) = 0.

Proof. Suppose « is a multiple roots of f(z) with mutliply m > 1. By
definition, (z — «)™|f(z) and (z — «)™"! does not divide f(x). That im-
plies, f(z) = (x —a)™g(z), for some g(z) € K[z]. f'(z) = (v —a)™g (z) +
m(x — o)™ tg(x). Therefore, f'(z) = 0. Conversely, f (o) = 0, Suppose a
is not a multiple root of f(x). Then « is a simple root of f(x). By remain-
der theorem, f(x) = (r — a)q(x) for some g(x) € F[x],g(a) # 0. That

implies, f(z) = (z — a)q () + q(z), f (o) # 0, which is a contradiction

to f (a) = 0. Therefore, « is a multiple root of f(x). O

Corollary 2.2.3. Let f(z) € Flx|. Then f(x) has no multiple root if and

/

only if (f(x), f (x)) = 1.
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Proof. Suppose, f(x) has no multiple root, Clearly (f(z), f (z)) € Flx].
Let (f(x), f'(x)) = deg(d(x)) > 1. Then f(z) = A\i(z)d(z) and f'(x) =
M (z)d(z) for some A(z),\(z) € Flx]. Let a be a root of d(z). Then
d(a) = 0. Then, f(a) = 0. « is a multiple root of f(z), which is a
contradiction.

Conversely, (f(z), f (z)) = 1, Suppose f(z) has multiple roots say a.
Then a is a root of f(z), (z — &)|f(x) and (z — &)|f (x). That implies,

(f(x), f(x)) = (x — a)\(z) for some A(z) # 1, which is a contradiction.

Hence f(x) has no multiple roots. O

Proposition 2.2.4. Let 2¥"~% € F[x] where char(F) = p, f(x) has no

mulitple root.

Proof. Let f(z) = 2?"~" € F[z]. Then f(z) =p"a?" ' —1=0—-1=1.
Also f'(x) = —1. Therefore (f(z), f(z)) = 1 if and only if f(z) has no

multiple roots. O

Proposition 2.2.5. Let char(F) = 0. If f(x) is irreducible over F, then

f(x) has no multiple root.

Proof. Clearly, f'(z) € F|x]| and deg(f'(x)) < deg(f(x)). Since f(z) is
irreducible, f(z) and 1 are the only factors of f(x). Therefore, f'(x) is

not divisible by f(z), and hence 1 is the only common factor of f(x) and

f'(x). Thus, (f(z), f'(z)) = 1. By Corollary 2.2.3 f(z) has no multiple

roots. O
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Corollary 2.2.6. If f(x) is irreducible over a field F where F is a subfield
of K, then f(x) has no multiple roots.If f(x) is irreducible over a field F

where F' is a subfield of K, then f(x) has no multiple roots.

Proof. Clearly char(F) = 0 and the proof follows from the above proof.

O

2.2.1 Simple Extension

Definition 2.2.7. A simple extension of F' is an extension K of F such

that K = F(a) for some a € K.

Example 2.2.8. Q(v2)|Q , Q(v/3)|Q Q(v/5)/Q are simple extensions.

Problem 2.2.9. Is Q(1/2,1/3)|Q simple?

Proof. Note that v/2,v/3 € Q(v/2,v3) and v2 + V3 € Q(v/2,V3).
Therefore, Q(v2 + v3) € Q(v2,v3). Let V2 + V3 € Q(v2 + V3),
0 = gt Then a = B8 - = —(V2 - v3) € Q(V2 + V3).
Hence, 2v/3 € Q(v2 + V/3)
V2,V3 € Q(v2 +/3) and so Q(v2,v3) € Q(V2 + V/3).

Therefore, Q(v/2,v3) = Q(v/2 + V/3) is a simple extension. O

Proposition 2.2.10. Let F' be a finite field of order p™. Then (F*,-) is

cyclic.
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Proof. Let |F| = p". Then (F*,+,-) is an abelian group and |F*| =
p" —1.

Let o be a maximum order element in F* and let m = ord(a)). Then
18|/]a| for all B € F*. For g € F*,p™ = gl = (BIFl)t = 1. B is a root of
2™ — 1, where forallf € F*. Since o™ =1, 1,,0?,...,a™ are distinct
elements inF™™. |F*| > m | |F*| = m > «a. Therefore, F'* is a cyclic group

generated by «, and « is a primitive element in F'. O

Proposition 2.2.11. Let G be a simple finite abelian group. Let a be the

maximum order element in G. Then |b| divides |a| for all b # a in G,

Proof. Suppose there is an element b # e € G such that |b| 1 |a|. Then,
ab € G, |ab| = ged(lal, [0]), lem{(|a|,|b])} > |a| which is a contradiction

to choice of a. Hence, |b|/|a| for all b # e in G. O

Theorem 2.2.12. Let f(x) € F[x], where char(F) = p (prime). Then

f'(x) = g(xP) for some g(x) € F|x].

Proof. Let f(z) = ag + a1z + aga® + --- + a,a”. Then, f'(z) = a1 +
a2 + 3azx® + - - + na,x L.

Suppose f (x) =0. Then, 1-a; +2 92+ 3-az2z®+ - + na,z" ' = 0.

Since F[x] is a vector space over F, {1,x,2% --- } is a basis for F|x]
over Fland {1,z,2?,...,2" 2 2" '} is a linearly independent in F'[x] over
F. we have a1 = 2a3 = -+ = (n — 1)a,_1 = na, = 0. a, = 0if p t m.

Therefore, f(z) = ag + apa? + agyz® + - - + apa' = g(z), where g(x) =
ap + apr + asr® + - + apr' € Flx).
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Conversely, suppose f(z) = g(2?), where g(x) = by+bjx+- - -+bpa™ €
Flx]. Then, f(z) = by +b1z? 4+ boz® + -+ - + b, 2™, and f'(x) = pbya?~! +
2pbox?? =t + - - + mpb,,z™P L,

Since char(F) = p, we have f'(x) = 0. 0

Proposition 2.2.13. Let char(F) = 0 and f(z) € Flz]. If f'(x) = 0,

then f(x) is a constant polynomial.

Proof. f'(z) =0 = a; + 2asx + 3azz* + - - - + na,z" = 0.

Since char(F) = 0, F' is a field of characteristic zero,( is a subfield
of F, Since {1,z,2% ..., 2" '} is a linearly independent in F[x] over F.
ma,, = 0, for all m =1 to n. — a,, = 0. Hence, f(x) = ag is a constant

polynomial. O

Theorem 2.2.14. Let f(x) € Flz]| be an irreducible polynomial over F.

Then all the roots of f(x) have the same multiplicity.

Proof. Let f(x) € F[z]| be an irreducible polynomial. If char(F) = 0,
then f(x) has no multiple roots. Hence, all its roots have multiplicity
1.Assumechar(F') = p (prime). Let a be a root of f(z) with multiplicity
m. Let f(x) = (x — a)™g(z) for some g(x) € F(a)[z]. — g(a) # 0, Let
f(x) = ap+arx+---+a,x" Let 5 be the root of f(z) and 5 # a. Consider
I : F — Fis an identity isomorphim. Then I(f(x)) = f(z). By theorem,
there exists an isomorphism o : F(«) — F(f) such that o(a) = I(«) for

all « € F'and o(a) = 5. Then, o(f(z)) = o(ap) +o(ar)x+---+o(a,)z" =
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ap+ar+ - +ay
o(f(x)) = flz) = o((z — B)"(g(x)).we have f(z) —o(f(z)) = (z -
B)"a(g(x)). Claim: o(g(5)) # 0 Let g(x) = by + byx + -+ + bpa™ €
F(a)lz].
(9(x)) = a(by) + a(by)x + -+ o(by)z™
=o(by) +o(b)B+ -+ 0(bn)B™
=o(by) +o(b)o(a)+---+o(by)o(a)™
= o(by + by + - - - + bya™)
— o(g(a)) # 0. Therefore, 3 is not root of o(g(x)).

By definition, 3 is a root of f(z) with multiplicity m. O

2.2.2 Separable Extension

Definition 2.2.15. Let [K : F] be a field extension. An element o € K is
separable over F if f(a) = 0 for some separable polynomial f(z) € F|[x].

[K : F)] is separable extension if « € K is separable over F, for all a € K.

Proposition 2.2.16. Let char(F) = 0. Then any algebraic extension of

F' is separable.

Proof. Let [K : F] be any algebraic extension. For any o € K, «
is a root of some minimal polynomial m,(z) € F[x]. Since mg(x) is
irreducible and char(F') = 0, m,(x) is separable over F. Hence, [K : F]|

is a separable extension. 0O
Example: K = Q(,/p: p is prime )is an infinite algebraic extension.
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Theorem 2.2.17. Let f(x) = 2P — a € F[z], where char(F) = p. Then
either f(x) is irreducible over F (or) f(x) is the pth power of a linear

polynomial.

Proof. Let f(x) = 2’ —a € F[z]. Let b be a root of f(x) in some
extension K of F'. Then F(b) =0, —a=0 = a=b € F.

Therefore, f(x) = aP — P = (x —b)P. If b € F, then f(x) = (x — b)P.
Suppose, b ¢ F. Since b is a root of f(x) over F, b is algebraic over F.
Let my(x) be the minimal polynomial of b over F'. Then my(x) | f(x).

Since f(x) = (z — b)?, if b € F, then f(x) = (x — b)P. Suppose b is a
root of f(x) over F, b is algebraic over F. my p(z)/ f(x) or my p(x) € F|x]
we have f(z) = (z — b)" for some ¢t < p. Then b is a root of g(x) and
q(x) = mpr(z) = (x —b)".

Sincmy () | f(x), we have f(z) = myp(x) - mp(z)---mrp(r) = (z —
b)™. Since deg(f(x)) = p, p = tm and p is prime, t = 1 or m = 1.
t =1, then myp(x) =2 —b = € F, which is a contradiction. Hence,
m = 1,t = p, f(z) = (x = b)" = (x — b)? = myp(z).Hence, f(x) is

irreducible over F'. O

Theorem 2.2.18. Let char(F) = p. Then every algebraic extension of F

is separable if and only if F = FP.

Proof. Let ) = {a”:a € Fyu}and 0 : Fjp — Fjo by o(a) = of =
o € Aut(Fp). (0) = Fpn = {o? : o € F}. suppose, any algebraic

extension of F' is separable, For any o € F, Lef(z) = 2 — a € F[z] then
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b is a root of f(z) in some extension of F' and K = F(a) [F(b) : F]| =
deg(g(z)) < oo, = F(b)/F is algebraic. By hypothesis, F'(b)/F is
separable and b is separable over F. Suppose b ¢ F'. Then by previous
theorem, f(z) is irreducible over F and f'(x) = pa?~'. f(b) = pb*~' =0
— b is a root of both f(x) and f'(z), By theorem, b is a multiple root of
f(x) and so = b is not separable over F. which is a contradicition.f
Henceb € F.0P —a =0 = a =W € FP = F C FP? For any,
y€e F,y=4d° forsomed € F — y e F — FP C F. Hence,
F = FP. Let [K : F] be any algebraic extension. Suppose [K : F] is not
separable.Then, there exists a € K, « ¢ F}, such that « is not separable
over F. = m,(r) = 0. = myr(r) = g(z?) for some g(x) €
Flz].Put g(z) = ap+axz+---+an,z™ € Flz]. Since a; € F, and F = FP?,
a; =0 g(x) = Oh+Wz+- - -+ 2™ = (bo+bix+- - +bpa™)P = mg p(x)
is irreducible over F. which is a contradiction to m, r(x) is irreducible

over F'. O

Definition 2.2.19. A field F is perfect if all finite extensions of ' are

separable.

(1) Let [K : F] be any finite extension. Then [K : F| is algebraic.

For any a € K, let my(z) be the minimal polynomial of a over F. Since

char(F) = 0, my(z) is separable over F. Hence [K : F] is a separable

extension. Therefore, F' is perfect.
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(2) If char(F) = 0 and [K : F| is any finite extension, then [K : F] is

a separable extension. Hence, F' is perfect.

Theorem 2.2.20. Let F' be a field and char(F) = p. Then F is perfect
if and only if ' = FP.

Proof. Suppose F' is perfect. Then by definition, every finite extension
K of F is separable. [K : F] is algebraic, [K : F] is separable = F =
F? Conversely, ' = FP. Let [K : F] be any finite extension.

Then[K : F| is algebraic and [K : F] is separable. Therefore, F' is

perfect. O

Theorem 2.2.21. Let [K : F| be a finite separable extension. Then

K = F(a) for some a € K.

Proof. Since, [K : F], is finite, K = F(aq, s, - - - ). where {aq, ag, - - - v, }
is a basis for K over F. Suppose, F' is a finite field. Clearly, K =
{aroq + asag + -+ + ayay, : a; € F} Consider, F' = F)' and |K| =
(™) =p™ = K = Fym. Fym =< o >= Fym(a) = [K : F]is
simple extension.

Suppose, F' is an infinite field. Then |K| < oo we prove by induction
on n, when n = 2, For any o, € K,a # [,«a,[ are separabl over F.

ma.r(x), mp p(x) are separable over F. a = {aq,as,...,an} be a root of

Mar(x). B ={b1,ba,...,b,} be a root of mg r(x).
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Consider the equation, (a —a;) + (8 —bj)r =0fori=1tom, j =1 to
t. Since F' is infinite, there exists v € F), such that

(a—a;)+y(B=bj)x # 0, a+yB # a;+~b; for all i, j. Let A = a4+ € K.
Therefore, h(z) = mqo p(A—~x). Then, h(5) = mar(A—7v2) = mys(a) =
0. Therefore, /3 is a root of both h(x) and mg p(x). Suppose b; is a root
of h(z) for some j > 2. Then h(b;) = mqr(A — vb;) = 0.X — b, is a
root of mg r(x). Since {a1,as,--- ,a,} are roots of my p(z). A\, vb; = a;
for some i. A = a; + b; which is contradiction A # a; + b, for all 1, j.
Therefore, by is the only common root to both h(z) and mg p(z). Since,
F e F(A),mgr(z) € F(N)[z]. Since, bi(xz) € F(N)[z], mgr(x),h(x)) =
(x — B) € FN[z]. = B € F(\) and 78 € F()\). Since, A = a +
py € FIN\A=py =a € F(\). = K = F(o,0) C F(\) =
F(\) = F(«,8) = K. Therefore, [K : F] is simple extension. Assume
that the theorem is true for n — 1, Then K = F(aq,aq, - a,) = F(0)
for some § < k. Since K = F(ay, a9, - ay) = F(ag,qe, - a, — 1) () =
F(0)(a) = F(6,a) = F(\) = X € K. Therefore, [K : F] is simple

extension. O

Theorem 2.2.22. Let f(x) = o/ —x € Flz]. Then f(x) is the product

of distinct irreducible polynomials p(x) and deg(p(z)) divides n.

Proof. Since F[x] is a unique factorization domain, f(x) = Pi(z) - -+ Py(x)
where each P;(z) is irreducible over F of degree d;. Pi(x) # p;(x).
Consider P,(z), Then by the above theorem, P,(z)|z?" — x over F.
All roots of P(z) lie in Fje and F,, = F(o;), where o; is a root of
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Pi(z)fori = 1tot..and f(a;) =0, so oy € Fyn and F(a;) C Fpn, |Floy]| =
p% and F(qy) is a subfield of F ..

Therefored; |n. 0

Let us sum up:

e Derivative of the polynomial.
e Nontrivial common factor.
e Simple extension.

e Seperable and perfect.

Check your progress

1. If f(x) € F[x] is irreducible with characteristic of F is 0, then f(x)

has —

2. If F is of characteristic 0 and f(x) € F[x] then —

Unit Summary:

In this unit, we studied the field and extension field over ring polynomials.
In addition, we introduced splitting field with properties. Also, analysed
more about roots of polynomials. Finally, we introduced the concept of

simple extension.
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Glossary:
e Remainder theorem.
e Extension field.
e Splitting fields.
o If z/" — z € F[z] for n > 1, has distinct roots.

e Simple extension.

Self Assessment questions

1. Show that the any two splitting fields of the same polynomial over a

given field F' are isomorphic by an isomorphism leaving every element

of F fixed.

2. The polynomial f(x) € F[z] has a multiple root if and only if f(x)

and f’(x) have a nontrivial common factor.

3. A polynomial of degree n over a field can have at most n roots in
any extension field.
4. There is an isomorphism 7** of Flz|/(f(x)) onto F'[t]/(f'(t)) with

the property that for every o € F, ar™ = o, (z + (f(2)))r™* =
t+(f'(t)).

Exercises

1. If p(z) is irreducible in F[z] and if v is a root of p(z), then prove
F(v) is isomorphic to F'(w) where w is a root of p/(¢); moreover, this
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isomorphism ¢ can so be chosen that
1. vo = w.

2. o = for every a € F.

2. If F is of characteristic 0 and if a, b, are algebraic over F', then prove

there exists an element ¢ € F(a, b) such that F(a,b) = F(c).

3. Show that Q(\/i, \/§) = Q(\/§—|— \/§)

4. Let F be the field of rational numbers. Determine the degrees of the
splitting fields of the polynomials over F.
(a) 2t +1

(b)a® 4+ 23 + 1

Answers for check your progress

Section 2.1
L (2 - a)"/p(a)
2. Q(V3)
Section 2.2

1. No multiple roots

2. f(z)=0
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Unit 3

The Elements of Galois Theory

Objectives:

e Recall the fixed field and subfield.
e To introduced finite extension and simple extension.

e Explain the Galois group and the fundamental theorem of Galios

theory.

3.1 Basics of Automorphism

Let R be any commutative ring with identity. A function ¢ : R — R is

an automorphism if ¢ is bijective and ¢ is ring homomorphism.

(1) For any commutative ring R with identity, define I : R — R by
I(x) = z, clearly, I is bijective, and I(zy) = I(x)I(y) = zy, I(x +

y) = I(x)+ I(y) for all =,y € G. Therefore, I is automorphism of R.

(2) Aut(R) = {0 : 0is an automorphism of R}. Clearly, I € Aut(R) #
0.
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(3) Aut(R) is a group under composition.

Example 3.1.1. Consider the integral domain R = (Z, +, -).

For any, o € Aut(R) o(0) = 0.

For any m € Z*,o0(m) =c(14+1+---+1)=0(1)+0o(1)+---+0o(1).
So o(m) = mo(1).

ForanymeZ ,m=—-1—-1---—1landsoo(m)=o0(—-1)+0o(—1)+
-+ 0(=1). = =mo(—1) = mo(1). Therefore, o(m) = mo (1) = mo(1).

Hence, o(m) = mo(1) for all m # 0 in Z.

Since R is integral domain, o(1) = 1 and hence o(m) = mo(1) = m

for all m € Z and so Aut(Z) = {I}.

3.2 Galios Group

Theorem 3.2.1. Let [K : F] be a field extension and g(x) € Flx]. If o is
an automorphism of K leaving every element of F' fized, then o is must

take a root of g(x) lying in E into a root of g(z) in E.

Proof. Let g(x) =ap+ a1z + -+ a,z" € Flz].
Given, a € K, is a root of g(x),o(a;) = a; for all 1.
Now, g(a) = ag + ara + - - - + a,a”™ = 0.

(o(a)) = op+ora1+---+o(a™)a, = o(ag)+o(ar)o(a)+---+o(ay)o(a™)

<

o(ag) + o(a1a) + o(axa?) + - - - + o(aa™)

=o(ag+aa+ -+ a,a™) =0(0) = 0. Hence o(«) is a root of g(z). O
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Example 3.2.2. Find Aut(C).

For any 0 € Aut(C), o(a) = a for all a« € R and o(a + ib) = o(a) +
o(i)o(b). From this we get o(a + ib) = a + o(i). Since i is a root of
22 + 1 € Q[z](or) R[z] and so o(i) = 4i. Hence Aut(C) = {I, sigma :
o(a+ib) = a —ib} = Zo.

Remark 3.2.3. (i) A prime field is a field containing no proper subfields.
(ii) For any field K, Q or Z, is a prime subfield of K.

Proposition 3.2.4. Let K be a field and F' be a prime subfield of K and
o € Aut(K). Then o(a) = a for alla € F.

Proof. If char(K) = 0, then Q is prime subfield of K. Therefore [K : Q]
is a field extension. For any p/q € Q,o(p/q) = p/q.
If char(K) = p, then Z, is subfield of K and so K|Z, is field extension.

For m € Z,,o0(m) = o(1)m = m. O

In view of Proposition, we have the following.

Example 3.2.5. If R = (Q,+, ) or (R,+, ), then Aut(R) = {I}.

Definition 3.2.6. Let K be a field and H < Aut(K). The fixed field of
HisFg={ae K:o(a)=aVoeH}.

Clearly Fy is a subset of K.

Proposition 3.2.7. Let K be a field and H < Aut(K). Then Fy is a
subfield of K.
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Proof. Clearly, Fy C K. For anyo € H,0(0) = 0, and ¢(1) = 1 and so
0,1 € Fy. Let a,b € Fg and b # 0, Then o(a) = a,0(b) = b,Vo € H. By
definition of Fy, o(a+b) =o(a) £ o(b) =a+band so a+b e Fy for all
o€ H. Also og(ab) = g(a)o(b) = ab for all ¢ € H and so ab € Fy.
Clearly, b! € K,o(b7!) = o(b)™t = b~!. From this we get b1 € Fy

and so Iy is a subfield of K. O

Theorem 3.2.8. Let F' be a subfield of K and G(K : F) = {0 € Aut(K) :
o(a) =a for alla € F}. Then G(K : F) is a subgroup of Aut(K).

Proof. Let I € Aut(K) with I(a) =aV a € K. Then I(a) =a V a €
F, — 1€ G(K : F). Hence G(K : F) is non-empty. Let 0,7 € G(K :
F). Then o(a) = a,7(a) = a ¥V a € F. Clearly, 0 o 7 € Aut(K). Also
(co1)(a) =0(1(a)) =0(a) =aforalla € Fandsoo-7 € G(K : F) and
o~ € Aut(K). Since, o(a) = aVa € F,o0 ' (o(a)) = 07 (a), ¥V a € F. This
implies (607! 0)(a) =0 '(a)Va e F. Hence a = [(a) =0 Y(a)VaeF

and so 071 € G(K : F). Hence G(K : F) is a subgroup of Aut(K). O

Theorem 3.2.9. Let K be a field. If Hy, Hy C Aut(K) and Hy C Hs,

then FH2 g FHl-

Proof. For any a € Fp,, we have o(a) = a for all ¢ € H,. Since
H, C Hs, we also have o(a) = a for all 0 € H;. By definition, Fp,, this

means a € Fpy, . Therefore, F, C Fp,. O

52



Theorem 3.2.10. If I and Fy are subfields of k and Fy C F;, then
Aut(k/Fy) C Aut(k/Fy).

Proof. Clearly, Aut(k/F;) C Aut(k). Let o € Aut(k/F;). Then, for
any a € Fy, we have o(a) = a. Since Fy; C F,, we also have a € F}, and
therefore o(a) = a for all a € Fy. This means o € Aut(k/Fy). Hence

Aut(k/Fy) C Aut(k/FY). O
In view of Proposition and Theorem |3.2.8|, we have the following.

Corollary 3.2.11. Let K be a field and let F' be a prime subfield of K.
Then Aut(K) = G(K : F).

Theorem 3.2.12. Let [K : F| be a finite extension. Then |G(K : F)| <
(K : F]

Proof. Clearly G(K : F) is a subgroup of Aut(K). Let n = |G(K : F)]
Suppose, |G(K : F)| > [K : F]

Let {ay1, a9, -+ ,a,} be a basis for K over F' and dimp = m < n,

Let G(K : F) ={I,0q,--- ,om}. Consider the system of equations,
o1(a1)xy + oo(aq)zy + -+ + on(aq)z, =0,

o1(ao)xy + oo(an)xe + - - - + 0y (), = 0,

o1(am)ry + oo(am)rs + -+ op(am)r, =0. — — — — — — — — (1)
Clearly, the number of equation is less than the number of unknowns,

(1) has non-trivial solutions, say 1, 52, ..., B (not all zero).
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Let ay, as, ..., a, be any arbitrary elements in . Then o(a;) = a; Vo €
G(K : F).
Since, f1, B2, ..., Bn are solutions of (1), (1) = o1((a1)f1 + o2(a1) P +
ot op(ar)fy =0, io1(oum) B1 + o2(am)as + -+ - + oy (am) B = 0.
From this we get , aj01((a1)B1 + a102(aq)Bo+ - -+ aron(aq) 8, =0, . ..
01 () P14 amos(am)as + - -+ + amop () B = 0.
‘Since G(K : F) ={01,09,--- ,0,}, 0i(aj) = a; V i, 7, from this, we get

o1(ar)or(ar)pr+ - -+ onar)on(aq) B, = 0.

o1(am)oi(om) Py + -+ - + omlan)on(am)Bn = 0.
= oi(ar+ -+ apan) B+ oa(arar +- -+ ) Bt +on(aron +
oo A Q) B = 0.
= Y0 o(ataq + - + o(am)anb;) = 0.
— Y 0i(y)Bi=0Vye K={0ifi+ - +b,5,:b € F.}
— fo(y)+ -+ Bron(y) =0V y € K.
Since {01, 09, ...,0,} is linearly independent over K, §5; = 0 V i, which is

a contradiction. Hence |G(K : F)| < [K : F]. O

Definition 3.2.13. (Galois extension)
Let [K : F] be a finite extension. Then [K : F] is a Galois extension if
G(K = F)| = [K - F].

If [K : F] is Galoios extension, then the Galois group of [K : F] is
G(K : F).

In general, Gal(K : F) = G(K : F) = Aut(K : F).
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Example 3.2.14. (1) G(Q(v/2) : Q) = Aut(Q(+/2)/Q) = {I}. There-
fore [Q(v/2) : Q] = 3 and so Q(v/2)/Q is not a Galois extension.

(2) G(Q(V5) : Q) = Aut(Q(+/5)/Q) X Zy. Therefore, [Q(v/5) : Q] = 4
and Q(v/5)/Q is not a Galois extension.

Definition 3.2.15. (Galois group)
Let f(z) € Flx] and K be the splitting field of f(z) over F. Then the
Galois group of f(z) is the group G(K : F)).

Example 3.2.16. Let K = Q(v/2). Then {1,/2} is a basis for a vector
space K over Q and so K = {a+by/2:a,b € Q}. For any 0 € Aut(K) =
Aut(K|Q), o(a) = a forall a € Q. For any y = a +bv2 € K, o(y) =
a+bo(v/2). Since v/2 is root of 22 — 2 over Q, o(1/2) is a root of 2% — 2
and so 0(v/2) = /2 and hence Gal(K|Q) = Z,.

Example 3.2.17. Let K = Q(v/2,v/3). Then {1,2,/3,16} is a basis
for a vector space K over Q and so K = {a+b\2+c\/3+dv6 : a,b,c,d €
Q}. For any 0 € Aut(K) = Aut(K|Q), o(a) = a for all a € Q. For any

= a+by/2+cV/3+dV6 € K, o(y) = a+ba(v/2)+co(v/3)+do(v/2)a(V/3).
Since /2 is root of 22 — 2 over Q, o(v/2) is a root of x? — 2 and so
o(v/2) = £/2. Similar way, we get 0(v/3) = £1/3. Hence Gal(K|Q) =
{I,01,09,03}, where 01(v/2) = V2, 01(V3) = —V3, 02(v2) = —V/2,
02(v/3) = V3, 35(V3) = —V/3, 05(v/3) = 3.

Hence Gal(K|Q) = Zo X Zs.
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Example 3.2.18. (1) Let f(x) = 23+x+1 € Zs[x]. Then f(0) = f(1) =

1 and so f(x) has no roots in Zy. Hence f(x) is irreducible over Zs
Let a be a root of f(x) in some extension in Zy. Then K = Zs(«)
and {1, o, a?} is a basis for K over Zy and Zs(a) = {ag+aja+aza? :
a; € Zo} = {0,1,,0% 1+ a+a? o> +a+1} and [Zy(a) : Zs] = 3.
fla)=0=a*+a+1=0=a’=-a—-1=a+1

a is a root of f(x) and o € Zs(av)

fle) =@ +a?+1=(a*)?+a?2+1=0
flat+ta®)=(a+a®P+a+a?+1=0

f@) = (z - a)(z — a®)g(x), g(x) € Zy(a)[z]

Therefore, Zs(«) is a splitting field of f(z) over Zs

o(x) = a+ bo(a) + co(a)?

Since «a is a root of f(x), o(a) is a root of f(x) and o(a) = , a? or

o+ o’ = Gal(Zg(&)/Zg) = Zs

Let f(x) = 2' + 2%+ 1 € Q[x]. Then +w, +w? are the roots of f(z).
where w is root of 22 + z + 1 and so Q(w) is a splitting field of f(x)
over Q. Hence Q(w)/Q is a Galois extension and [Q(w) : Q] == 2 =
|Gal(Q(w)/Q)]-

Clearly {1,w} is a basis for Q(w) over Q and Q(w) = {ag + aw :
a; € Q} and o(x) = ag + ajo(w) for all o. Clearly w is a root of
22+ 2+ 1€ Q[z], o(w) is a root of 2° + x + 1 € Q[z]. This implies
o(w) = w or w? and hence Gal(Q(w)/Q) = {I,0 : 0(w) = W?} = Zs.
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Example 3.2.19. Let K = Q(v/2) and F = Q, where w® = 1. Let
a = v/2, wa,w?a ¢ Q are root of p(x) = 2> — 2, p(z) is irreducible over Q
and so {1, a, @®} is basis for Q(v/3) over Q. Thus Q(v/2) = {a+ba+ca? :
a,b,c € Q}. For any o € Aut(Q(v/2)|Q), o(a) = a for all a € Q. Also
o(a+ba+ca®) = a+ o(a)b+ o(a)?c and so o(a) is root of p(z) and so
o(a) = a. Hence o(a + ba + ca®) = a+ ab+ a’c and so 0 = I. From
this we get Aut(Q(v/2)) = Aut(Q(+/2)|Q) = {I} and so Q(v/2,w)|Q is

not Galois extension.

Example 3.2.20. Let K = Q(v/2,w) and F = Q, where w® = 1. Then
Q(V?2,w) is a splitting of 23 — 2 € Q[z] and [K : Q] = |Aut(K|Q)| = 6.
Thus {1, a = v/2, a?, w, wa,wa?} is a basis for K over F and so K = {x =
a+ba+ca®+dw+ewa+ fwa? :a,b,c,d e, f € Q}. For any o € Aut(K),
o(z) = a+bo(a)+co(a)?+do(w)+eo(w)o(a)+ fo(w)o(a)?. This implies

w is root of ¥2 + x + 1 and v/2 is root of #* — 2 and so o(w) = w or w?

and o(a) = a, wa or w?a. Hence Gal(K|Q) = S;.

Example 3.2.21. Let K = Q(v/3,i) and F = Q. Then Q(v/3,i) is a
splitting of (2% — 3)(z* + 1) € Q[z] and [K : Q] = |Aut(K|Q)| = 4. From
this, {1,/3,4,iv/3} is a basis for K over F' and K = {a + b\/3 + ci +
div/3 : a,b,c,d € Q}. For any o € Aut(K), o(a+ b3 + ci + di\/3) ==
a+ o(v/3)b+ co(i) + do(i)o(y/3). This implies o(v/3) is root of 2 — 3
and so o(v/3) = /3. Note that o (i) is root of 22 + 1 and so o (i) = 1.
Hence Aut(Q(v/5)|Q) = {I,01,09,03} = Zy X Zy, where 07 : V3 — /3
and i — —i, 09 : V3 — —V3andi —ioy:vV3— —vV3and i — —i
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Theorem 3.2.22. Let [K : F] be a finite extension. Then [K : F| is a
Galois extension if and only if K is the splitting field of seperable polyno-

mial over F.

Proof. Suppose K is the splitting field of some seperable polynomial
over F. Then |Aut[K : F|| = [K : F| and hence, [K : F] is Galois
extension.

= K/F is normal

Conversely, [K : F] is Galois extension. then [K : F| = |Gal[K : F]| =
n < oo

Let GallK : F| = {01,09,...,0,}
Claim 1: If p(z) is monic irreducible over F' and o € K is a root of f(x)
then all the roots of f(x) be in K and p(z) is seperable over F

Let S ={o(a):0 € GallK : F]}. Then S = {a; = a,...,a;} where
a; # .

Forany j =1,...,n,0(0;) = 0j(0(a)) = gjooi(a) = o(a) = oy, € S.
This implies 0(S) =S V 0 € Gal[K : F)|

Define g(z) = 1", (z — o) € K|[z]

Let g(x) = ag +a1x + ...+ ap_12" 1 + 2% € K|x]

Thus, 0(g(x)) = iy (2 — o(aw)) = TTj (7 — o) = g(2)

olag) +o(a)r+... +o(ap_1)x" 1+ 2 =ag+ax+... +ap_ 2"t +ak

= (o(ag)—ag)+...+(o(ar_1)—ar_1)xz* 1t = 0and 0;(a;)—a; € K. Since
{1,z,...,2" '} is linearly independent in K[z] over K, o;(a;) —a; =0V i

O
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Theorem 3.2.23 (Fundamental theorem of Galois theory). Let [K : F|]
be a Galois extension and G = Gal[K : F].

Let A={FE: Eis a subfield of K containing F}, B={H : H < G}.
Then there is a bijection A <> B given by the correspondence E —{the
elements of G fizing E'} and {the fixed field of H}< H which are inverse

to each other.

Proof. Let Hy,Hy, € B and H; # H,. Then Fy, # Fp,, where Fy,
is the fixed field of H;. Clearly, Fp, is a subfield of K containing F'
Fp,, Fg, € Aand Fy, # Fy,. From this, B -+ Ais 1-1. Let E € A. Then
E is the subfield of K containing F. Since, [K : F] is Galois extension,
K is the splitting field of some seperable polynomial f(x) over F. Since
F C E,Flz] C E[x] and f(z) € E[z], we have K is the splitting field of
f(z) over E. Thus [K : FE] is Galois extension and |Aut[K : F]| = [K : E].
Also F is the fixed field of Aut[K : E] < G. Thus A — B is onto. Hence

A < B is a bijection and |A| = |B| O

Under this correspondence

(i) If Ey, B> corresponds to Hy, Hy respectively, then Fy C Fs if and
only if Hy C H;.

Proof: Clearly F; is the fixed field of H; and so H; = Aut|K : Ej].
Suppose £y C Esy. For any 0 € Hy = Aut[K : El];0(a) = a,Va € Eb.

= o(a) =a,Ya € Ey C Fy and 0 € Aut|K : F4]|. Thus Hy C Hj.

Conversely, Hy C H;. For any o Hy, by definition of F1,0(a) = a,Va €

H,. Since Hy C Hy, we have 0 € H,.
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(ii) [K : E] = |H| and [E : F] =[G : H].

Proof: Clearly, E is the fixed field of H and H = Aut[K : E] and
|H| = |Aut(K|E)| = [K : E|(. [K : E] is a Galois extension ). Since
[K : F]is a Galois extension, [K : F] < co. Thus [K : E] and [K : E] are
finite extensions. Clearly, [K : F| = [K : E][E : F].

= [B:F] =g = 7 = G H].

(iii) Let £ C A. Then [K : F] is Galois extension and Gal[K : E]| =
Aut[K : F] < G.

Proof: Since [K : F] is Galois extension and K is the splitting field of
seperable polynomial f(z) over F, Gal[K : FE] = Aut|K : E] < G.

Theorem 3.2.24. Let F; be the fized field of H; < G and o0 € G. F and

F5 are conjugates under o if and only if cHio™t = Hs.

Proof. (c7toToo)(z) =2,V7T € Hy = o0 loTo0o0 € H,Vr € Hy =
o 'Hyo € H = HyCoHyo™", Hy=0H,0~!

Conversely, suppose cHijo™! = Hy. Forany y € 5, coTo0 ! €
Hy,V7 € Hy. (coToo™ ) (y) =y,V7 € Hy. (too™H(y) =0 y),VT € Hy
which implies o71(y) = x, for some x € Fi,y = o(z) € o(F) and so
Fy, Co(F). Foranyx € Fi, 0 toTtoo € H,VT € Hy. (07 loT00)(2) =
z, V1 € Hy. (Too)(x) = o(zx),Vr € Hy which implies o(z) € F;, for all

xr € Fy and so o(F}) C Fo. O

(iv) [F : F] is Galois extension if and only if H <G.
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Proof: Suppose [E : F] is Galois extension. Then by definition of Ga-
lois extension, [E : F| = |Aut(E|F)| < oo and [E : F] is finite extension.
Also F is the splitting field of some seperable polynomial f(x) over F' and
hence F = F(ay, a9, - ,qy,), where q; is root of f(x) over F'. For any
o € Gal|K : F],o(q;) is a root of f(x) over F,Vi.

{o(), o), - o(am)} = {9, -+ am}.
o(E)=F(o(ar),0(s), - ,0(ay)) = F(ag,as, -+ ,ap) = E.
= F is conjugate to itself under 0,0 € Gal[K : F|. By Theorem [3.2.24]
oHo™ ' = H Vo € GallK : F]. Thus H <G = Gadl[K : F).

Conversely, H I G = Gal[K : F]. Then cHo™ ' = H,Vo € G and
by Theorem [3.2.24] 0(E) = E,Vo € G. [E : F] < oo and so [E : F] is
algebraic. Clearly, E = F(B1, 82, - , Bn), where [3}s are algebraic over F.
By (i) and (ii), £ is splitting field of some seperable polynomial over F

and [E : F] is Galois extension. Clearly, [E : F] = % = |Aut[E : F]| and

% is a group.

Define ® : G — Aut[E : F] by ®(0) = o1, where 01 € GallF
F),o1p(a) =0(a),Va € E. Let 0,7 € G. Then 0.7 € G and (0.7)1g(a) =
(r.0)a = o(7r(a)) = o1p(1(a)) = o1g(npla)) = (o1g.11E)(a),Ya € E.
(0.7)15 = o1p-mig. Thus ®(0.7) = (6.7)1p = o1p.7ig = ®(0).®(7). Sup-
pose 0 € Ker®. Then ®(0) = Ig. o1p = [p < o1p(a) = Ig(a) = a,Va €
F < o(a) =a,Ya € E < o€ H= Ker® = H. By first isomorphism
theorem, (§) = ®(G) < Gal[K : F] and so (g = [E : F] = |®(G)] <
|Gal|E : F]| = [E: F].

= |Gal[E : F|| = [E: F] =|%].
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= Gal[E : F] = &.

(v) Let E; be the fixed field of H;,7 = 1,2. Then E; N Ey is the fixed
field of H =< Hy, Hy >.

Proof: Let Fjy be the fixed field of H. For any a € Fyy,0(a) = «,Vo €
H. Since H =< Hy,Hy >, Hy, H, C H, we have o(a) = a,Vo € H; and
(o) = a, V7 € Ho.
=o€ Fb,a€ Bhy=a¢€ EiNE,. Thus Fy C E1NE,. Let € E1N Es.
Then § € Fy, 3 € Es. Since E; is the fixed field of H;, o(8) = p,Vo €
Hy,7(8) = p,V1 € Hy. Since H =< Hy, Hy >, for any § = o o 7, where
o € Hy,7 € Hy. §(8) = (co71)(B) =0(r(B)) =0(B). Thus g € Fyg and
FEiNEy; C Fy. Hence E1 N Ey = Fy is a fixed field of H.

3.2.1 Symmetric function

Definition 3.2.25. Let x1, 29, ..., 2, be indeterminates. A polynomial
f(xy,29,...,2,) € Flx1,29,...,2,] is a symmetric function if for any
o c Sn, f(xa(l)a Lg(2)s - - - 7560'(71)) - f(xlax% S 73:71)-

For any o € S, o(i) =1,
[, 20, 2n) =21+ 22+ -+ + T
Then, f($0(1)7x0(2)7 ce 7'170(71)) =21 +To+ -+ Ty

when n =3, 0 = {1, 2,3},

f(x1, 22, 23) = m1+20+23. 0 = {1,3,2} = f(21,23,22) = v1+23+72 =
(w1, 20, 23), 0 = {2,1,3} = f(x2,71,23) = 23 + 21 + 23 = f(21, T2, T3),
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o=1{3,2,1} = f(z3,29,71) = 3 + 22 + 11 = f(21, 22, x3). Therefore,

f(x1, x9,x3) = x1 + T2 + x3 is a symmetric function.

Definition 3.2.26. Let F' be a field and let x1,z9, ..., 2, be distinct n

indterminants z; # x;. Let F[xy, x9,...,x,] be an integral domain. Then,
F(xq,29,...,x,) is the field of fractions of F[z1,xs, ..., x,).
F(xy,m0,...,2,) = {% : fog € F(xy,x9,...,2,)}
f(x1,z9,...,2,) € F(x1,29,...,,) is a symmetric rational function if
for any permutation o € S, f(Z,1), To2), - Tom)) = f(@1, T2, ..., Tp).

When n = 2, f(x1,22) = x1 + 29, 1179, 3 + 23, 27" + 2 are symmetric

functions.

Definition 3.2.27. Elementary Symmetric function s; = f} ri = T+
i=1

Ty + e+

52 = 2. Tl
7]

S3 = > XiT;T
i#j 7k

Sp = T1Tg -+ Tp
Let S = {f(x1,2z9,...,2,) € F(s1,82,...,8,) : f is a symmetric} be
the subfield of F(z1,xs,...,x,), and F(s1,S2,...,S8,) is the subfield of S
containing F'. Then, F(xy,x9,...,x,)|S, F(z1, 22, ..., 2,)|F (51, S2,...,5n)

—> S|F(s1,589,...,58,) are a field extension.

Problem 3.2.28. Find G(F(x1,xo,...,x,) : S) (or) AutF(xq, 9, ..., x,)|S.
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Proof. Foranyo € S, define:r, (F(x1,x9,...,2,)) — (F(x1,22,...,2,))
by 7o (f(z1, 22, ..., 20)) = (To(1), To(2), - - - » Tom))-
Claim: 7, € Aut(F(z1,z9,...,2,))|S.
Let f(x1,z9,...,2,), g(x1,29,...,2,) € F(x1,29,...,2,) Then,
To(f(xy, 2o,y xn) + g(xy, 2o, .y xy)) = To(h(21, 20, ..y 2y))
= WTs(1), To(2)s - - > Tom) = [(To(1), To(2), - - > Ton)) F9(To(1)s To@)s - - - Tam))

= 7,(f) + 75(9)-

= k(To(1), To2)s - - - Tom)) = F(To(1), To@) - - - Tom)) 9 (Ta(1)s Ta@)s - - » To(n))
= 7,(f)75(9) 7 is a ring homomorphism. Clearly, 7,(1) =1 # 0,7, # 0.
T, is one-one. For any h(z,-1(1), ..., To-1(n)) € F (21, 72,...,2y),
To(M(Zo101), - To1(n))) = M Zo(o1(1))s - - > To(or(n))) = M@, T2, ..., 1)
Hence, 7, € Aut(F(x1, 2, ...,2,)) and so |Aut(F(x1, 2, ..., 2,))| > nl.

Define @ : S, — Aut(F(x1,29,...,x,)) by ®(0) = T,. Let 0,7 € Sh.
Then o1 € .5,,.

Tor(f(x1,20,...,20)) = f(%m)a Lor(2)y - - - ;%T(n))
= [(Tr(c1))s Tr(0(2) - - > Tr(on))) = Tr(f(To1), To@), - - To(n)))
=T, (To(f(x1,29,...,2p)))
= (T,T,)(f(x1,29,...,2,)).

Therefore, ®(o7) = T,, = T,T, = ®(0)®(7). Hence, ® is a group
homomorphism.

Suppose 0 € ker ®. Then by definition, T, = ®(o) = I.Let I be
the identity automorphism of F'(x1,x9,...,x,). Then, o(i) # i implies
o(i*) = j* for some j € {1,2,...,n}. Hence, o0 # I and so ker & = {1}.
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By First Isomorphism Theorem, S,, = ®(S,,) C Aut(F(z1,22,...,Ty)).
Clearly, |®(S,)| = |Sn| = n!. Let Fyy be the fixed field of H C Aut(F(x1,xo, ..., x,)).
Then, Fy C F(z1,22,...,%y).
Let f(x1,2,...,2,) € Fg. Then, T,(f(x1,x9,...,2,)) = f(x1,T2,...,2y)
for all 0 € Sy,. This implies f(2,(1), o), - - > Tom)) = f(21, T2, ..., 1,) for
all o € S,,. Hence, f(x1,x9,...,2,) is a symmetric rational function.
Let S = {1, : 0 € S} C Aut(F(x1,x9,...,x,)). Then, |S| = |9,| =
n!.
Let f(z) = 2™ + 512" 4+ 892" 2 + -+ + (=1)"s,, € F[s1, 59, ..., 5, [7].
Then, f(x) € F(x1,29,...,2,). Hence, |Aut(F(z1,x2,...,2,))| > nl.

Therefore, |Aut(F(z1,x2,...,2,))| = nl. O

Let us sum up:

e Automorphisms and Fixed field.
e Elementary symmetric functions.
e Normal extension.

e Galois group.

e Fundamental theorem of Galois theory.

Check your progress

1. What is [F(x1, 22, ...,xp : S)] =7
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2. Let K is the field of complex numbers and F’ is field of real numbers,

then the order of G(K, F') is —

3. What is G(F(x1, x9,....,xy),S) =7

Unit Summary:

In this unit, we discussed the concept of fixed field, subfield, finite exten-
sion and simple extension. Further, we introduced the Galois group and

the fundamental theorem of Galios theory.

Glossary:

e G(K, F)— is the set all group of automorphisms.
e o(G(K,F)) <|[K :F]

e Symmetric rational functions

e Norma extension

e Galois group

o Ky={reGK,F)|lo(x) =z for everyo € H}

Self Assessment questions

1. If K is a finite extension of F', then G(K, F) is a finite group and its

order, o(G(K, F)) satisfies o(G(K, F)) < [K : F].

2. Show that the fixed field of G is a subfield of K.
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3. K is the normal extention of F iff K is the splitting field of some

polynomial over F.

4. G(K,F) is a subgroup of the group of all automorphisms of K.

Exercises

1. Prove that a symmetric polynomial in x4, ,, z, is a polynomial in the

elementary symmetric functions in x1,,, x,.

2. If p(xz) = 2" — 1 prove that the Galois group of p(z) over the field of

rational numbers is abelian.

3. Using the Eisenstein criterian, prove that z* + 23 + 23 + 2 + 1 is

irreducible over the field of rational numbers.

4. Express the following polynomials in the elementary symmetric func-
tions in xy, T, T3 :
(a) 2% + 23 + 3

(b) a3 + a3 + a3

Answers for check your progress
1. n!

2. 2
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Unit 4

Finite Fields

Objectives:

e Recall the finite field and splitting field.

e To prove the Wedderburns theorem on finite division rings.

4.1 Finite Field

Definition 4.1.1. The nature of fields having only a finite number of

elements such fields are called fields.

Lemma 4.1.2. Let I’ be a finite field with q elements and suppose that
F e K, where K is also a finite field. Then K has q" elements where

n=I[K:F].

Proof. Since K is a vector space over I’ and since k is finite, then K is
a finite-dimensional vector space over F.

Suppose that [K : F] = n.
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Then K has a basis of n elements over F'.

Let vy, v9,...,v, be the basis elements, then every element of K has
unique representation in the form ayv1+asve+- - -+a,v,, Where aq, ao, . .., o,
are in F.

The number of elements in K is the number of ayv; + asvy + - - - + v,
as the o/s range over F. Since each coefficients can have ¢ values, K must

have ¢" elements. O

Corollary 4.1.3. Let F be a finite field, then F has p™ elements (where

p is a prime number), then P is the characteristic of F'.

Corollary 4.1.4. If the finite field F' has p™ elements, then every a € F

. m
satisfies a’ = a.

Proof. If a = 0, the result is trivially true.

If the non-zero elements of F' form a group under multiplication of order

p" — 1.
By corollary 2. ”If G is a finite group and a € G, then a®©) = ¢”, we
have
"l =1
ap77l
=>—=1
a
=a"" =a
O

Lemma 4.1.5. If the finite field F' has P™ elements, then the polynomial
o — 2 in Flx] factors in Flz] as 27" — x = er(z — N).
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Proof. By lemma, "A polynomial of degree n over a field can have at
most n roots in any extension field.”
The polynomial 27" — = has at most p™ roots in F.

However, by corollary, we know that p” roots are all the elements of

Then by corollary, ”If a € K is a root of p(z) € F[x], where FCK,
then in K[z], (x — a) | p(x)”, we have

e — =T (z = \).
AeF

Corollary 4.1.6. If the field F' has p™ elements, then F' is the splitting

field of the polynomial 27" =%,

Proof. By lemma, 2" — z splits in F.
However, it cannot split in any smaller field to have all the roots of
this polynomial and to have at least p™ elements.

Thus, F is the splitting field of 2" — x. O

Lemma 4.1.7. Any two finite fields having the same number of elements

are isomorphic.

Proof. If these fields have p™ elements, by the above corollary, they are
(K1, K3) both splitting fields of the polynomial 2" — z over J, (the ring

of integers modulo any prime p )
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If p is a prime, then J, is field.

Therefore, they are isomorphic. O

Lemma 4.1.8. For every prime number P and every positive integer m

there exists a field having p™ elements.

Proof. Consider the polynomial 2/ —z in .J,[z], the ring of polynomials
in x over J,, the field of integers mod P.

Let K be the splitting field of this polynomial.
In K, let F = {a ck:a’ = a}. The elements of F' are the roots of
A

By corollary -2 are distinct.
whence F' has p™ elements.
Now claim that F is a field. If a,b € F, then, a?" = a, b’ = b, and so

(ab)P" = a?" """ = ab.
= (ab)?" =ab, a,beF.
Also, since the characteristic is p.

(a £0)"" =a £
= (a£ b =a+b, a+tbcF

consequently [ is a subfield of K and is a field having p elements. O

Theorem 4.1.9. For every prime number p and every positive integer m

there is a unique field having p™ elements.
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Theorem 4.1.10. Let G be a finite abelian group with the property that
the relation x™ = e is satisfied by atmost n elements of G, for every integer

n.

Proof. If the order of G is a power of some prime number ¢, then the

result is very easy.

Suppose that a € G is an element whose order is as large as possible.
Let the order of " a ’ be ¢" for some integer r.

2 ....a7 ! gives us ¢" distinct solutions of the equa-

The element e, a, a
tion 29 = e.
By our hypothesis, there are all the solution of this equation. If b € G its

order is ¢® where s < r.

Then

r—S

b = (qu)qT_s =e! =e

. By the observation made, we have b = a' for some 1.

Therefore, G is cyclic. O

Definition 4.1.11. Let F' be a commutative ring with 1. F' is a field
if (F*, .) is an abelian group. (or) Every non-zero element in F' has

multiplicative inverse.

F is finite field if |F| < oc.

Proposition 4.1.12. Let F' be a finite field of order p". Then (F*,-) is
cyclic.

Proof. Let |F| = p". Then (F*,+,-) is an abelian group and |F*| =
p" — 1.
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Let o be a maximum order element in F* and let m = ord(a)). Then
18|/]a| for all B € F*. For § € F*,p™ = gl = (BIFl)t = 1. B is a root of
2™ — 1, where forallf € F*. Since o™ =1, 1,,0?,...,a™ are distinct
elements inF™™. |F*| > m | |F*| = m > «a. Therefore, F'* is a cyclic group

generated by «, and « is a primitive element in F'. O

Remark 4.1.13. Let F' be a finite field.
(1) (F*,.) is a finite abelian group.
(2) |a| < oo, for all @ € F™.

(3) Clearly, |1|(p4) < oo and char(F')= [1|p4) < oo, Since char(F) = 0

or p.
(4) {0} and {F'} are only ideals in F.
(5) Zp is a prime subfield of F.
(6) F'/Zp is field extension and F' is a vector space over Z,.

(7) From this, F' has basis and so dimy (F') = n = [F : Z,] since |F| <

0.
(8) Aut(Fpn/Zy) = Zy,0 : Fyn = Fyn by o(a) = a”.
(9) [Fpr : Zy) = n = |Aut(Fyn/Z,)| and so Fpn/Z, is Galois extension.
(10) Fpn/Z, is simple extension.

(11) (F*,.) =< a > for some «a € F.
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(12) F is perfect and F} is a spliting field of separable polynomial 2" —z

over L.

Theorem 4.1.14. Let F be a finite field with q elements F' C K, where
K is finite field. Then |K| = q™ for some m.

Proof. Since, FF C K,[K : F] is field extension, and so K is a vector
space over F. Since, |K| < oo, dimp(K) = m < oo, Let {ag, s, - ay,}
be a basis for K over F. Then K = {ajaq + asas + -+ - apavy, = o € F}

and so |[K|=¢q---q=q". O

Theorem 4.1.15. For every prime p, and every positive integer m, there

exists a unique finite field with p™ elements.

Proof. Let f(x) = 2" — x € Z,[z]. Then, there exists a spliting field K
of f(x) over Zp. Let K = Z, (all roots of f(z) ) and char(K) = p. Clearly,
fl(x) =pma?" 1 —1.If a € K, is aroot of f(x), then f'(a) = p™a?" "1 —1.
Therefore f(x) is separable over Z,. Let S = { all roots of f(x)}. Then
S| = p™, and S C K. Let a,b # 0 € S, then a’" — a = 0 implies that
a" =a," =b. (a£ )" =a” £ =a+b = a=+b are roots of

m

f(x),a+be S Now, (ab)?" = a?"b" = ab = (ab)?" = —ab=0. ab is
aroot of f(z) over Z, and ab € S. Clearly, (b"1)?" = (0#")™! = b lisa
root of 2#" —x. = b~! € S. Since (S, +,.) is a field, and 0 : Fyn — Fyn
by o(a) = af. S is a subfield of K. Since, K is the splitting field of
f(z), K C S. and so Fjn|Z, is Galois extension. =— K = S and
K| =p". = K = Fyn. 0
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Corollary 4.1.16. F,n is a spliting field of x" — x over Z,,.

Corollary 4.1.17. If Fy, F5 are finite fields with |Fy| = |Fs| = P™, then
Fl = FQ.

Proof. Fj is a spliting field of 27" — x over Z,. F; is a spliting field of

""" — x over Z,. Therefore, {F} = Fy}. O

Proposition 4.1.18. Let m,n € Z*, then mln = 2™ — 1|z" — 1.

Proof. By definition, n = mk + r, where 0 < r < m. Now, z"(1 4+ 2™ +
2 DMy (g 1) (27— 1),

=" (™ P b L g g2 (B hm

= 2"+ 2" (2" — 1) = 2" — 1.

xr(’g £ (2™ — 1) (2" — 1) = (2" — 1).

Suppose, ™ — 1|z — 1 if and only if " — 1 = 0 if and only if n = mk +0

if and only if m|n. O

Proposition 4.1.19. If m|n, then 2" — z|a?" — x.

Proof. Since, m/n,n = Am, for some A and m <n, = p” —1]p" — 1
: xp'ln_l . l‘xp'fl_l - 1
= " —xla? — .

Therefore, [F), : Zy] = n. O

Theorem 4.1.20. Fj» is a subfield of Fpn iff m|n.
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Proof. Suppose, Fjm is a subfield of F,». Then Fjn/F,~ is a field exten-
sion, and F» is a vector space over Fym. Since, |Fyn| < 00, [Fyn @ Fym| < 00,
Since char (Fym) = p, Z,, is a prime subfield of Fjm, and [Fpn : Z)] =m <
0.

Clearly, [Fpn : Zp) = [Fpn + Fym][Fpm = Zy)]

n = [EFpn : Fym].m Clearly, [Fpn : Fym] = n/m.

Conversely, m|n, Consider, f(x) = /"% g(z) = 27" ~* € Z,[z]. Then,
F,m is spliting field of f(z) over Z,. and F). is spliting field of g(x) over
Z,. Clearly, Fyn = 7Z, (all roots of g(x)) and F,m = z, (all roots of f(x).)
Since m|n, 2?" — x /2" — x over Z,.

" —x =" —x\(x), \(z) € Zy|x]. For any a € Fym, a is a root of x?" ¢
over Z, and so o € Fyn. So Fym C F), . Since Fym is field, Fj» is a subfield

Of Fpn. |

Remark 4.1.21. Consider Fym. The number of subfields of Fyn is T(n).

Theorem 4.1.22. Let p(x) be any irreducible polynomial of degree d over

Zy,. Then p(z)|z?" — x over Z, for some n. and hence p(z) is separable.

Proof. Let p(x) be any irreducible polynomial over Z,. and deg(p(z)) =
d. Then there exists an extension & of Z, such that K has a root o of
p(z) and [K : Z,] = deg(p(z))d. Clearly, {1,a,a?,-- a1} is a basis for
K over Z,. K = Zy(a) = {ap + L.aja + -+ + ag 10! : a; € Zp}. and
|K| = p?, and K = Fis a spliting field of z” =z over Zy. Therefore,
a € K is a root of #F'~* over Z,. Clearly, Zao,%p = P(z) and P(z)/a""~*
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d
. oz .
over Z,. Since, is separable over Z, and p(z) is separable over Z,.

g

Proposition 4.1.23. Given any positive integer n, there exists an irre-

ducible polynomial of degree n over a finite field F.

Proof. Consider, Fjm, then F)m is a subfield of Fmn. That implies Fymn / Fpm
is field extension.

[Fpmn : Fyn] = mn/m = n. Since Fymn = F n@.

p
[Fp’rrm . Fpm] = [Fpm(a) . FPm] < 00. o 18 algebraic over Fpm.
[Fymie)  Fpm] = deg(ma,pm (@) = n. O

Let us sum up:
e Finite field.
e Cyclic group.

e Division ring.

Check your progress
1. If the finite field F' has p™ elements then every a € F' satisfy —

2. Any two finite fields having the same number of elements are —

4.2 Wedderburn Theorem

Theorem 4.2.1 (Wedderburn theorem). Every finite divisional ring is a
field.
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Proof. Let D be any finite divisional ring. Let F = Z(D) = {z €
D : xy = yx, for all y € D}. Then F is a field and FF C D. Clearly
D is a vector space over F' and dimp(D) = n < oco. Since |D| < oo,
|F| = q < 0.

Clearly {aq, s, ...,a,} is a basis for D over F' and so

D =A{a101 + asas + - - - + aya, : a; € F}

and |D| = ¢". Let G = (D*,.) be a group. Then Z(G) = {x € D* : xy =
yx, for all y € D*} = F*. Clearly |G| = ¢" — 1 and |F*| = ¢— 1. By

Class equation,

Gl =12(G)|+ > [G: Ng(a)] — (1)
a¢Z(G)

For any a € Z(G),clg(a) = {gag™ : g € G} = {a}. For any a ¢
Z(G),Ng(a) < G.

Gl

clg(a)| = [G': Ng(a)] = No(d)]

In D,Cp(a) = {x € D : za = ax},Ng(a) = {x € D : za = ax}
and Cp(a)* = Ng(a). Clearly, (Cp(a),+) < (D, ) and by Lagrange’s
theorem, |Cp(a)| divides |D| = ¢". Thus |Cp(a)| = ¢, for some n(a) €
Z*. Since Ng(a) = Cp(a)*, |Ng(a)| = ¢ —1. Since Ng(a) is a subgroup
of G, |Ng(a)| divides |G|,q"® — 1| ¢" — 1 if and only if n(a) | n and
n(a) # n.
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Equation (1), |G| =q¢—1+ > e
(- 1ef n(@nn(a)n T
Let 2" — 1 = IlI ®y(x) € Z[z]. For dn,d #n, 2¢ — 1 = ‘ I 9,(x).
d|n m|d,m#n

77 — 12" =1 = 2" — 1 = (27 — 1)g(x), where g(z) € Z[z] = (z¢ —
1)@, (z)h(x), where h(z) € Z[z]. From this we get, L= = &, (2)h(z).

Now @, (z)
= o, wx) € Ziz|, ,(q) € Z
@0, 5 (x) € Zla], ®a(q)
= ®,(q > pC Since, 2" —1=®,(x) 11 Py(z).
(9) | O T o ( )dm’d#n (x)
"—1=9, o .
q (9) ald a(q)
= ®,(q)l¢" — 1.
¢, (|G = = ) and so ®,(g)lg — 1.
n(a)|n,n(a)#n 4
Claim: n = 1.
Ifn>1then®,(z)= I (r—a). ®,(¢)= 11 (¢g—a)€cZ.
QE by, |ae|=n QE fip,|a|=n

For a € p,, and |a| =n,|¢ — a| > ¢—1. |®,(x)| > ¢ — 1 which implies

®,,(¢) 1 ¢ — 1, which is a contradiction. Hence n =1 and F' = D. O

Let us sum up:

e Wedderburn theorem.
e Commutative field.
e Finite division ring.

e Jacobson theorem.

Check your progress

1. A finite division ring is necessarily —
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2. Any finite subring of a division ring is —

Unit Summary:

In this unit, we discussed the concept of finite extension and splitting
field. Further, we proved the WedderburnaAZs theorem on finite division

rings.

Glossary:
e If F" has p™ elements then every a € F satisfies a”" = a.
o 27" — 1 =TDer(z— N\
e The Wedderburn’s theorem.

e Cyclotomic polynomials (Examples: ®1(x) =z — 1, ®9(z) =z + 1

and ®3(z) =2 + 2+ 1.)

Self Assessment questions

1. The multipicative group of non-zero elements of a finite field is cyclic.

2. Prove that for every prime number p and every positive integer m

there exists a field having p™ elements.
3. Show that a finite division ring is necessarily a commutative field.

4. If R is a finite ring in which 2" = x, for all z € R where n > 1 prove

that R is commutative.
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Exercises

1. Let G be a finite abelian group enjoying the property that the relation
x" = e is satisfied by at most n elements of G, for every integer n.

Then G is a cyclic group.

2. If the field F has p" elements prove that the automorphisms of F

form a cyclic group of order n.

3. If 0 # 1 is a root of unity and if ¢ is a positive integer, prove that

lg—0]>q—1

4. Let D be a division ring and K a subdivision ring of D such that
rKz™! C K for every x # 0 in D. Prove that either K C Z, the

center of D or K = D.

Answer for check your progress

Section 4.1

2. Isomorphic

Section 4.2

1. Commutative field

2. Division ring
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Unit 5

Solvability of Radicals

Objectives:
e Recall the splitting field of polynomial over F'.
e To know the solvable by radicals over F'.

e To prove the Frobenius theorem and Four-square theorem.

5.1 Frobenious Theorem

Definition 5.1.1. A division ring D is said to be algebraic over a field F
if
1. FC Z(D)

2. For any a € D, f(a) =0 for some f(x) € F[x]

Remark 5.1.2. If D is algebraic over F', then F' is subdivision ring of D

and so D is a vector space over F' and D has a non-zero basis.
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Theorem 5.1.3. Let D be the division ring. If D is algebraic over C,
then D = C.

Proof. By definition, C is the subdivision ring of D and so C C D. For
any o € D, a is a root of some f(x) € F[x] and deg(f(x)) = n.

By Fundamental Theorem of Algebra,
fl@) = (z =)@ —=Xo) - (z = An)

where \; € C. Clearly f(a) = (a — M)(a— X)) (a—\,) =0. (o —
M)(a—Xg)...(a—A,)=0in D ... (1).
Since a, \; € D, a — \; € D Vi. Since D has no zero divisor, f[l(oz —

Ai) = 0= a— )\ = 0 for some i. From this, we get « = \; € D;

ab=0=a=0or b=0. Therefore D C C and hence D = C. O

Theorem 5.1.4. (Frobenious Theorem) Let D be the division ring. If D

is algebraic over R, then D = R, C or real quaterinion ring.

Proof. By definition R is a subdivision ring of D. If D = R, then
trivial fact. Suppose D # R. Then there exists a € D such that a ¢ R.
Since D is algebraic over R, a is a root of some irreducible polynomial
g(x) over R. Clearly deg(g(x)) =1 or 2. If deg(g(z)) = 1, then g(z) =
cx + d where ¢,d € R and ¢ # 0. Now g(a) = 0 = ca+d = 0 and so
a = —% € R, which is a contradiction to a ¢ R. Hence deg(g(z)) = 2.
Let g(x) = 2% — 2az + B € R[z] where a, 3 € R and 3 # 0. Since

g(a) = 0= a*-2aa+8 = 0, a’*-2aa+a’* = o*—B and so (a—a)? = a*—f.
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Claim: o®> — 8 < 0. Suppose o> — 3 > 0. Then there exists § € R
such that a? — 8 = 6> = (a — ) This implies a — o = £§ and so
a = £6 + a € R, which is a contradiction to a ¢ R. Hence o® — = 0.

Since (a — a)? = a? — 83, (a — a)? = a® — f — % for some v € R. From

this, (“=%)? = —1. Take i = =2, i? = —1.
2 2

Suppose D is a commutative ring. Then R C R(i) C D, \; = 0 for
some 4. Since D is algebraic over F, D is algebraic over R(i) = C. By
above theorem, D = C.

Suppose D is not commutative.
Claim: Z(D) =R.

Suppose Z(D) # R. Since D is algebraic over R, R & Z(D) and 3

a € Z(D) such that a ¢ R. a € D, by above argument, 3 a,v € F

such that (“;O‘)2 = —land i = ¢ ¢ Rand i € D, 2 = —1. Clearly
R CR(i) & D. Since D is algebraic over R, D is algebraic over R(i) = C.
By above theorem D = C is a commutative ring which is a contradiction.
Hence Z(D) =R # D.

Let a € D with a ¢ R. Then there exists «,y € R such that i = = ¢
R and > = —1and i ¢ R. i ¢ Z(D), then 3 b € Z(D) such that ib # bi.
Let ¢ = bi —ib # 0 in D. Then ic + ci = i(bi — ib) + (bi — ib)i implies
ic+ci = ibi —i2b+bi? —ibi and so ic+ci = b—b = 0 implies ic = —ci. Also
2

2 2

ic? = (ic)c = (—ci)c = —c(ic) = c% implies ic> = ¢%. Since c € D, c is a
root of f(x) over R. This implies ¢ is a root of the irreducible polynomial
22+ Xv + p € R[z] and so ¢ + Ac + p = 0. Hence A\c = —c? — p. Since

A€ R, iIA=Xi. Also ()i = (= — p)i = —c%i — pi = —ic® — iy =
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i(—c* — p) = i(Ac) and so 2Xci = 0.
Since ¢ # 0 and ¢ # 0 and D is a division ring, A = 0 and ¢ = —\.

If 4 < 0 then ¢® > 0 and ¢ € R and ¢ = (bi — ib)(bi — ib) and
2 = i(ib?> — b*) ¢ R, which is contradiction to ¢ € R. Hence x> 0 and
¢ =—v? (p="r? and (£) = —1. Take j = < and k = ij.

Let T = {ag+ a1i + asj + ask : oy € R}, Then T' C D, T is a
subdivision ring of D.

If v € D satisfies > = —1, then C(v) = {x € D : av = vz} is a
subring of D and 1,0 € C(v) and C(v) is a subring of D. Now Z(D) =
R c C(v) = C(v) is a vector space over R and dimg(C(v)) = 2. From
this, {1, v} is a basis for C'(v) over R and so C(v) = {ag + av/a; € R}.

Suppose D # T'. Then there exists u € D such that uw ¢ D andsou ¢ R
and for o,y € R such that (%)2 = —1 Let w =% and 1w + wi € D,
i(lw + wi) = —w + iwi = w(—1) + iwi = wi* + iwi = (wi + iw)i and
w(iw + wi) = wiw + w'i = wiw + (—1)i = wiw + i(—1) = wiw + w? =
(wi+iw)w. This implies iw+wi € C(i) and iw+wi = ag+a1i = oy+aji.

Clearly iw + wi € C'(w). O

Theorem 5.1.5. Let F be a field and F contains all n'" roots of unity

anda#0€ F. If f(z) =2" —a € F|z|, then
1. the splitting field of f(x) over F is F(u) for some root u of f(z)
2. [K : F] is normal extension
3. Gal|K : F| is abelian.
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Proof. Letw be the n' root of unity. Then 1, w,w?, ..., w"

~Lare distinct
roots of 2" — 1 over F and so v, = {1,w,w?, ..., 0" 1}} =< w >.

Let f(z) = 2" —a € Flz]. Then {/a, Vaw, ..., /aw" ! are roots of
f(x) over F. If w/{/a = w//a for 1 < i < j < n. Then by cancellation
law, w' = w’
w7 = 1. Since |w| = n and i — j < n, w7 = 1. This is not possible.
Hence /a, /aw, ..., /aw™ ! are distinct roots of f(x) over F and so
f(x) is separable over . By hypothesis, 1,w,w? ...,w" ! € F and so
K = F({/a) is the splitting field of f(x) over F' and so [K : F] is Galois
extension. Let 0,7 € Gal[K : F]. Then o(+/a) and 7(:/a) are roots of
f(x) over F. Let o(3/a) = w'/a and 7(/a) = w/ {/a, i # j. Clearly
(0 07)(¥/a) = o(r(/a)) = o(w’ ({/a)) = w'w! {/a and so (0 0 7)(/a) =
wriya. Clearly (10 0)(/a) = 1(0(¥a)) = T7(w(/a)) = ww'/a and
so w7 /a. Therefore (1 o o)(/a = (0 o7)(/a) and (too) = (o o7)
and hence Gal[K : F] is abelian. Since R is the splitting of f(z) over F,

[K : F] is normal extension O

Let us sum up:
e Algebraic over a field F.

e Frobenius theorem.

Check your progress

1. If C be the field of complex numbers and suppose that the division
ring D is algebraic over C', then —
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2. If D be a division ring over F. Ifa € D, a ¢ F such that [(a—a)/7]? =

5.2 Radical Extension

Definition 5.2.1. A group G is said to be solvable(or soluble) if there

exists a chain of subgroups

(e =HyC---CH,=0C

such that each H; is a normal subgroup of H;,; and the factor groups
H;,1/H; is abelian for every i = 0,...n — 1.

The above series is referred to as solvable series of (.

Example 5.2.2. Any abelian group is solvable.

Example 5.2.3. Any non-abelian simple group is not solvable.

Definition 5.2.4. Let G be a group and a,b € G. Then aba~'b7! is
called the commutator of a and b and is denoted by [a,b]. Let A =
{aba b : a,b € G} = {[a,b] : a,b € G} be the set of all commutators of

elements in G.

Definition 5.2.5. Let G be a group. The subgroup of G generated by
the commutators of elements of GG is called the commutator subgroup of
G. The commutator subgroup of a group G is denoted by G’ or GV or
|G, G]. Note that commutator subgroup is also called derived subgroup
of G.
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Theorem 5.2.6. Let G be a group. Then G' = {e} if and only if G is

abelian.

Proof. Let G’ be the commutator subgroup of G. Assume that G' = {e}.
Then by Definition [5.2.5] aba='b=! = e for all a,b € G and hence ab = ba
for all a,b € G. Hence G is abelian.

Conversely, assume that G is abelian. Then ab = ba for all a,b € G

which implies ab (ba)™" = aba~'b~! = e for all a,b € G and hence G =

{e}. O

Theorem 5.2.7. Let G be a group. Then

(1) G' is a normal subgroup of G.

(11) G/G" is abelian.

(¢ii) If H is a subgroup of G, then G/H 1is abelian and H is a normal
subgroup of G if and only if G' C H.

Proof. (i) Let g € G and 2 € G'. Then x = ¢;...c, where c; s are

commutators of elements in G and hence ¢; = a;b;a; 'b; ! for some a;, b; €

G foralli=1,...,n. Now
=g(cr...cn) g

(a1b1a1 bl : anbnaﬁlbﬁl) g_l

= (ga19™") (9brg™") (9ar'g™") (gbi'g™") - (9ang ™)

(9bn97") (9a,"97") (gby' g7 )

Hence grg~!' € G’ and so G’ is normal subgroup of G.
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(ii) By (i), G/G’ is a group and also aba~'b~! € G’ for all a,b € G. From
this, we get abG’' = baG’ for all a,b € G and so aG'bG" = bG'aG’ for all
a,b € G. Hence G/G" is abelian.

(741) Assume that G/H is abelian and H is a normal subgroup of G. Then
xH yH = yH zH for all z,y € G and so (zy) (ysc)_1 € Hforall z,y € G.
Thus zyz 'yt € H for all z,y € G and so G' C H.

Conversely, assume that G’ C H. For any g € G and =z € H,

grg~t = grg~'z~'z € H, which shows that H is a normal subgroup of G.
Since G/ C H, aba '~ € H for all a,b € G and so aH bH = bH aH for
all a,b € G. Hence G/H is abelian. O

Definition 5.2.8. Let [K : F| be a field extension. [K : F] is simple

radical extension if K = F(«) such that " € F for some n € Z.

Example 5.2.9. Q(+/2)|Q, Q(v/2)|Q and Q(w)|Q are all simple radical

extensions.

Example 5.2.10. Is Q(v/2,/3)|Q a simple radical extension?

Solution:
Q(vV2+v3) =Q(v2,V3)

(V2++3)?=5+2V6

(V2+v3)* = (vV2+/3)(5+2V6) and so (vV2++/3)" ¢ Q for any n € Z*.
Clearly Q(v/2,v/3)|Q is not a simple radical extension
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Definition 5.2.11. [K : F] is radical extension if there is a tower of fields
F=FFKCFCFKC.---Ck CFy C--- C F,= K such that each

F; 1| F; is simple radical.

Example 5.2.12. Is Q(v/2,/3) a radical extension?
Clearly K = Q(+/2,v/3)|Q is radical extension, since Q C Q(+/2) C
Q(v2,v3), Q € Q(v3) C Q(v2,Vv3) and Q C Q(V6) C Q(v2,V3).

Example 5.2.13. Clearly Q(+v/5,7)|Q is radical extension, since Q C
Q(i) € Q(V/5,1) C Q(V/5,1).

Definition 5.2.14. 1. Let [K : F| be algebraic extension and a € K.

Then « is solvable by radical or « is solvable over F' if there exists a

radical extension [L : F] such that o € L.
2. [K : F] is solvable if « is solvable over F for all a € K.

3. Let f(x) € F[z] be solvable. Then all of roots the splitting field are

solvable over F'.

Example 5.2.15. Let f(z) = 2° — 2 € Q[z]. Then v/2, wv/2, w?y/2 are
the roots of f(z) over Q and so K = Q(~v/2,w)|Q is radical extension, since
Q C Q) C Q(V2,w), Q C Q(V2) C Q(V2,w), and Q C Qwv/2) C
Q(v/2,w), and Q € Q(w?) C Q(¥/2,w). Therefore f(z) is solvable over
Q.
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Theorem 5.2.16. If p(x) € F|x| is solvable by radicals over F, then the

Galois group over F of p(x) is a solvable group.

Proof. Let K be the splitting field of p(z) over F.
Then the galois group of p(z) over F is G(K, f).

Since p(x) is solvable by radicals over F, then there exists a sequence of

fields.

FCFle(CU1)CF2:F1(w2)C...CFK:FK_1<Q)K)

, where w' € Fiwy? € Fy,...,w* € Fx_1 and KCF,. W.L.O.G, assume
that Fx is a normal extension of F'.
Since F is a normal extension of F', then Fj is also a normal extension
of any intermediate field.

Hence F} is a normal extension of each F;. By lemma, each F; is a
normal extension of F;_; and since F is a normal over F;_;, by theorem,
G (Fk, F;_1) is a normal subgroup in G (Fg, F;_1).

consider the chain,

G(Fk,F)DG(Fk,Fl)D...DG(Fk,Fk_l)D{G} (1)

Each subgroup in this chain is a normal subgroup.

Since F; is a normal extension of F;_1, by the fundamental theorem of
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Galois theory, the group of F; over F;_q,

G (Fk7 E—l)

G (F;, F;_1) is isomorphic to G (Fu. F)

By lemma, G (F;, F;_1) is an abelian group.

Thus, each quotient group é{’ii) of the chain (1) is abelian.

Thus the group G (Fk, F) is solvable.

Since K C Fx and K is a normal extension of F' by Theorem |,

G (Fk, F) is a normal subgroup of G (Fk, F') and G(K, F) is isomorphic

(FK F)
G(Fk,K)"

Thus, G(K, F) is a homomorphic image of G (F, F).

to

Since G (Fg, F') is a solvable group, by the corollary to lemma-5.7.1,
G (K, F') must be a solvable group.

Since G(K, F) is a galois group of p(x) over F'; and G(K, F) is solvable,

then the galois group of p(x) over F' is solvable group. O

Remark 5.2.17. The converse of this theorem is also true. i.e. If the
Galois group of P(x) over F' is solvable, then p(x) is solvable by radicals

over F'.

Theorem -5.7.2 and its converse part are true even if F' does not contain

roots of unity.

Theorem 5.2.18. (Classic Theorem of Abel): The general polynomial of

degree n > 5 is not solvable by radicals.
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Proof. If F (ay,as,...,ay) is the field of rational functions in the n vari-
ables ay,ao, ..., a,.

Then the Galois group of the polynomial

p(t) =t" +at" '+ +a,

over F' (a1, as,...,a,) was s, the symmetric group of degree n. Then, S,
is not a solvable group when n > 5.
Thus, p(t) is not solvable by radicals over F' (aq, as, . .., a,) whenn > 5.

]

Let us sum up:

e Solvable by radicals.
e Solvable.
e Homomorphic image.

e Galois group is solvable group.

Check your progress

1. S, is not solvable for —

2. If a, B, are the roots of the equation 23 + 322 + 22 + 1 = 0, then

the value of > aff =
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5.3 Integral Quaternions

Let Q) be the division ring of real quaternions.

Definition 5.3.1. For x = ag + a1t + a; + ask € @, the adjoint of z,

denoted by z*, is defined by x* = ay — a1 — asj — azk.

Lemma 5.3.2. The adjoint in () satisfies
(i) 2™ ==z

(ii) (x4 Py)* = ax* + By*, where o, f € R

X 0%

(i) (ay)" = y'a".

Proof. (i) Let v = ap+aii+aj+ask € Q. Then 2™ = ag— a1t —agj —ask
and (z%)* = ag + a1i + azj + azk = .

(ii) Let © = ap + a1i + a; + agk and y = by + b1i + b; + bsk € ). Then
axr + By = (aay + Bby) + (aar + Bb1)i + (aaz + Bbe)j + (aas + Bbs)k.
Therefore by the definition of *, (ax+ fy)* = (aag+ Bby) — (aay + Bby)i —
(cvag + Bbo)j — (aas + Bbs)k = ax™ + By*.

(iii) It is enough to do so for a basis of ) over the reals. We prove it for
the particular basis 1,4, j,k. Now ij = k and (ij)* = k and (ij)* = —k.
Similarly (ik)* = k*i*, (jk)* = k*j*. Also (i*)* = —1 = (i*)?, and
similarly for j and k. Since part (iii) is true for the basis elements and
part (ii) holds, (iii) is true for all linear combinations of the basis elements

with real coefficients, hence (ii) holds for all arbitrary =,y € Q O
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Definition 5.3.3. If x € @, then the norm of x, denoted by N(z), is

defined by N(z) = zz*.

Note that if v = ag+a1t+asg) +ask € ), then x* = ag— a1 —asj —azk
and N(z) = a2 + a? + a3 + a3. Also N(0) = 1 and N(z) is a positive real
number for z # 0 in Q. In particular, for any real number a, N(a) = a*.

If # #0, then 271 = ﬁx*

Lemma 5.3.4. For all x,y € Q, N(zy) = N(z)N(y).

Proof. By the very definition of norm, N(xy) = (zy)(xy)*. By Lemma
5.3.2, (xy)* = y*z* and so N(xy) = zyy*z* = xN(y)z*. Since N(y) is

real and N(y) is in center of @, N(xy) = z2*N(y) = N(x)N(y). O

Theorem 5.3.5. Every positive integer can be expressed as the sum of

squares of four integers.

Proof. Given a positive integer n.
To claim: n = a3 + 2% + x5 + 23 for four integers xg, z1, 72, T3.
Since every integer factors into a product of prime numbers, if every prime
number were written as a sum of four squares. By Lagrange identity, every
integer can be expressed as a sum of four squares.

Thus, we have to prove this theorem for prime numbers n.

For n = 2, the prime number 2 can be written as 12 + 12 + 02 + 0? as

a sum of four squares.
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Thus, WLOG , assume that n is an odd Prime number p. consider the

quaternions W), over J,, the integer mod p.

W, ={ao + ani + agj + ask | ap, a1, a0, 3 € Jp}

= W, is a finite ring. since p # 2, it is not commutative for ij = —ji # ji.
Thus, by Wedderburn’s theorem, Wp cannot be a division ring. (By
problem 1 of sec.3.5) It must have a left-ideal, which is neither (0) nor
Wh.

But then the two-sided ideal V' in H, defined by

V = {xo€ + x1i + x2j + x3k | P divides all of xg, 1, x2, x3} .

It cannot be a maximal left -ideal of H, since H/V is isomorphic to Wp.
(If V were a maximal left-ideal in H, H/V and so W), would have no left
-ideals other than (0) and H/V).

Thus, there is a left-ideal L of H satisfying L # H, L #V and L D V.

By lemma, there exists u € L such that every element in L is a left
-multiple of w.
since p € V and p € L, then p = cu for some c € H.

Since u ¢ V, ¢ cannot have an inverse in H, otherwise u = ¢~ 'p would
be in V.

Thus, N(C') > 1 by lemma.

since L # H,U cannot have an inverse in H, hence, N(u) > 1. Since
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p=cu & p? = N(p) gives

But N(c) & N(u) are integers, since both ¢ and U are in H, both are
larger than 1& both divide p?.

The only way this is possible is that N(C) = N(U) = P.
since u € H, u = mo& + myt + maj + msk
where m,, my, ms, mg are integers.

Thus, 2u = 2mgb + 2myt + 2moj + 2msk

= (mo + mot + moJ + mok) + 2mqi + 2moj + 2mgk
= mg + (2my +myg) i + (2ma + mg) j + (2m3 + myg) k.
Therefore, N (2u) = m2 + (2m1 4+ mg)® + (2mg + mo)* + (2ms 4+ mo)°.
But N(2u) = N(2)N(u) = 4P.
since N(8) =4 and N(4) = P. we have shown that

4]? = mg + (2m1 + m0)2 + (2m2 + m0)2 + (2m3 + mo)Q

We are almost done. To finish the proof we introduce an old trick of
Euler’s:
If 2a = a3 + 23 + 23 + 23 where a, xg, 21, T2 and x3 are integers.

Then a = y5 + yi + y3 + y3 for some integers yo, Y1, Y2, y3
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Since 2a is even, the x ’s are all even, all odd or two are even and two

are odd.

At any rate in all three cases we can renumber the z's and pair them in

such a way that

Tyt Ty — 11 T2+ X3
Yo = 9 YY1 = 9 y Yo = 9

La2—T3

5+ are all integers.

and y3 =

But, 3 + 17 + 93 + 93 = (30)” 4 (mym)? 4 (mpm)?

1
:§(x3+x§+:c§+x§)
1
= (2
5(20)

=a

since 4p is a sum of four squares, by the remark just made 2p also is:

Since 2p is a sum of four squares, p also must be such a sum.

Thus p = a3 +a? +a3+ a3 for some integers ag, ay, as, a3 and Lagrange’s

theorem is established.

Let us sum up:

e Adjoint.and Norm.
e Lagrange Identity.
e Left Division Algorithm.

e Left and right Ideal.
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Check your progress

1. If a € H the a~! € H if and only if —

2. Which form of the primes numbers can be expressed the sum of two

squares 7

Unit Summary:

In this unit, we discussed the splitting field of polynomial over F' and the
solvable by radicals over F'. Further, we proved the Frobenius theorem

and Four-square theorem.

Glossary:

e Solvable and commutator
e S, is not solvable for n > 5.

e Only irreducible polynomials over the field of real numbers are of

degree 1 or 2.
e The Frobenius theorem.
e N(z)=zxx*
e Q={r€Q/r=atai+ayj+task, and z* = ay—i—asj—azk.}

e Four square theorem.
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Self Assessment questions

4.

. Let D be a division ring algebraic over F', the field of real numbers.

Then prove D is isomorphic to one of: the field of real numbers, the

field of complex numbers, or the division ring of real quaternions.
Prove that if « € H then a™! € H if and only if N((a) = 1.

Let G = S, where n > 5; then G for k = 1,2, 3, ... contains every

3-cycle of S,,.

The general polynomial of degree n > 5 is not solvable by radicals.

Exercises

1.

Every positive integer can be expressed as the sum of squares of four

integers.
Prove that subgroup of a solvable group is solvable.

If A is a ring algebraic over a field F and A has no zero divisors prove

that A is a division ring.

Exhibit an infinite number f positive integers which cannot be written

as the sum of three squares.

Answers for check your progress

Section 5.1
1. D=C
2. —1
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Section 5.2

1.

2.

n>>5

2

Section 5.3

1.

2.

N(a)=1

dn +1
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